从头开始梳理去年 敲注释 无意义

从头开始梳理去年 敲注释 无意义,第1张

import numpy as np
import torch
import torch.nn as nn 
import torch.optim as optim 
from torch.autograd import Variable
dtype = torch.FloatTensor 

# 本次将要训练的句子集,也就是输入
sentences = [ "i like dog", "i love coffee", "i hate milk"]

# 以下两行代码是将上面sentences列表中的单词提取出来
word_list = " ".join(sentences).split() # 每句首先使用空格分割形成一个单词列表
word_list = list(set(word_list)) # 用一个小技巧,先让list变成set,然后再变回去,这样就提取出了单词列表
# 以下两行是建立单词对应序号的索引字典word_dict和序号对应单词的索引number_dict
# 使用了enumerate函数,使得在遍历的同时可以追踪到序号,i, w是元组,其实可以写成(i, w)
word_dict = {w: i for i, w in enumerate(word_list)} # w: i 单词对应序号键值对
number_dict = {i: w for i, w in enumerate(word_list)} # i: w 序号对应单词键值对
n_class = len(word_dict) # number of Vocabulary

# NNLM Parameter
n_step = 2 # n-1 in paper 根据前两个单词预测第三个单词
n_hidden = 2 # h in paper 隐藏层神经元个数
m = 2 # m in paper 词向量维数

# make_batch是将输入sentences中的前面的单词和最后一个单词分开
def make_batch(sentences):
    input_batch = [] # 用于存放输入的单词
    target_batch = [] # 用于存放最后一个单词,模拟预测的结果

    for sen in sentences: # 对sentences中的每个句子
        word = sen.split() # 默认空格分割
        input = [word_dict[n] for n in word[:-1]] # 注意这里的切片不能切反了,[:-1]是刚好最后一个不要
        target = word_dict[word[-1]] # 最后一个单词 
        
        # 将分离好的输入结果放到列表中存好
        input_batch.append(input) 
        target_batch.append(target)

    return input_batch, target_batch

# Model NNLM模型部分
class NNLM(nn.Module): # 定义网络时一般是继承torch.nn.Module创建新的子类
    def __init__(self): # 构造函数
        super(NNLM, self).__init__() # 子类构造函数强制调用父类构造函数
        # 参数都是论文中的数学表示
        # 以下是设置神经网络中的各项参数
        # 一个嵌入字典,第一个参数是嵌入字典的大小,第二个参数是每个嵌入向量的大小
        # C词向量C(w)存在于矩阵C(|V|*m)中,矩阵C的行数表示词汇表的大小;列数表示词向量C(w)的维度。矩阵C的某一行对应一个单词的词向量表示
        self.C = nn.Embedding(n_class, m)
        # Parameter类是Variable的子类,常用于模块参数,作为属性时会被自动加入到参数列表中
        # 隐藏层的权重(h*(n-1)m)
        self.H = nn.Parameter(torch.randn(n_step * m, n_hidden).type(dtype))
        # 输入层到输出层权重(|V|*(n-1)m)
        self.W = nn.Parameter(torch.randn(n_step * m, n_class).type(dtype))
        # 隐藏层偏置bias(h)
        self.d = nn.Parameter(torch.randn(n_hidden).type(dtype))
        # 隐藏层到输出层的权重(|V|*h)
        self.U = nn.Parameter(torch.randn(n_hidden, n_class).type(dtype))
        # 输出层的偏置bias(|V|)
        self.b = nn.Parameter(torch.randn(n_class).type(dtype))

    # 前向传播过程,如paper中描述
    def forward(self, X):
        X = self.C(X)
        X = X.view(-1, n_step * m) # [batch_size, n_step * n_class]
        tanh = torch.tanh(self.d + torch.mm(X, self.H)) # [batch_size, n_hidden]
        output = self.b + torch.mm(X, self.W) + torch.mm(tanh, self.U) # [batch_size, n_class]
        return output

model = NNLM() # 初始化模型

# 损失函数定义为交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 采用Adam优化算法,学习率0.001
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 以下三行将输入进行torch包装,用Variable可以实现自动求导
input_batch, target_batch = make_batch(sentences)
input_batch = Variable(torch.LongTensor(input_batch))
target_batch = Variable(torch.LongTensor(target_batch))

# Training 训练过程,5000轮
for epoch in range(5000):

    optimizer.zero_grad() # 初始化
    output = model(input_batch)

    # output : [batch_size, n_class], target_batch : [batch_size] (LongTensor, not one-hot)
    loss = criterion(output, target_batch)
    if (epoch + 1)%1000 == 0: # 每1000轮查看一次损失函数变化
        print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

    # 自动求导反向传播,使用step()来更新参数
    loss.backward()
    optimizer.step()

# Predict 预测值
predict = model(input_batch).data.max(1, keepdim=True)[1]

# Test 测试
print([sen.split()[:2] for sen in sentences], '->', [number_dict[n.item()] for n in predict.squeeze()])

 最简单入门的NLP了。

下面是一个简单的文本分类。

import time
from datetime import timedelta
from datahelper.data_process import DataProcess
from config.lr_config import LrConfig
from lr_model import LrModel
import tensorflow as tf


def get_time_dif(start_time):
    """获取已经使用的时间"""
    end_time = time.time()
    time_dif = end_time-start_time
    return timedelta(seconds=int(round(time_dif)))


def evaluate(sess, x_, y_):
    """测试集上准曲率评估"""
    data_len = len(x_)
    batch_eval = data_get.batch_iter(x_, y_, 128)
    total_loss = 0
    total_acc = 0
    for batch_xs, batch_ys in batch_eval:
        batch_len = len(batch_xs)
        loss, acc = sess.run([model.loss, model.accuracy], feed_dict={model.x: batch_xs, model.y_: batch_ys})
        total_loss += loss * batch_len
        total_acc += acc * batch_len
    return total_loss/data_len, total_acc/data_len


def get_data():
    # 读取数据集
    print("Loading training and validation data...")
    X_train, X_test, y_train, y_test = data_get.provide_data()
    X_train = X_train.toarray()
    X_test = X_test.toarray()
    return X_train, X_test, y_train, y_test, len(X_train[0])


def train(X_train, X_test, y_train, y_test):
    # 配置Saver
    saver = tf.train.Saver()
    # 训练模型
    print("Training and evaluating...")
    start_time = time.time()
    total_batch = 0  # 总批次
    best_acc_val = 0.0  # 最佳验证集准确率
    last_improved = 0  # 记录上一次提升批次
    require_improvement = 1000  # 如果超过1000轮未提升,提前结束训练
    flag = False
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for step in range(config.num_epochs):
            batch_train = data_get.batch_iter(X_train, y_train)
            for batch_xs, batch_ys in batch_train:
                if total_batch % config.print_per_batch == 0:
                    loss_train, acc_train = sess.run([model.loss, model.accuracy], feed_dict={model.x: X_train, model.y_: y_train})
                    loss_val, acc_val = evaluate(sess, X_test, y_test)

                    if acc_val > best_acc_val:
                        # 保存最好结果
                        best_acc_val = acc_val
                        last_improved = total_batch
                        saver.save(sess=sess, save_path=config.lr_save_path)
                        improve_str = "*"
                    else:
                        improve_str = ""
                    time_dif = get_time_dif(start_time)
                    msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%}, '\
                           + 'Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
                    print(msg.format(total_batch, loss_train, acc_train, loss_val, acc_val, time_dif, improve_str))
                sess.run(model.train_step, feed_dict={model.x: batch_xs, model.y_: batch_ys})
                total_batch += 1

                if total_batch - last_improved > require_improvement:
                    #  验证集准确率长期不提升,提前结束训练
                    print("No optimization for a long time, auto-stopping...")
                    flag = True
                    break
            if flag:
                break


# TODO:后续有需要再做
def test():
    """
    目前直接输入一个语料,分为训练集和验证集合
    也可以输入两个,一个训练集用sklearn分为训练集和验证集,单独找一个验证集再这测试
    还可以输入训练集、验证集、测试集,测试集在这做测试
    """
    pass


if __name__ == "__main__":
    config = LrConfig()
    data_get = DataProcess(config.dataset_path, config.stopwords_path, config.tfidf_model_save_path)
    X_train, X_test, y_train, y_test, seq_length = get_data()
    model = LrModel(config, seq_length)
    train(X_train, X_test, y_train, y_test)
import tensorflow as tf
import joblib
import jieba
from config.lr_config import LrConfig
from lr_model import LrModel


def pre_data(data, config):
    """分词去停用词"""
    stopwords = list()
    text_list = list()
    with open(config.stopwords_path, 'r', encoding='utf-8') as f:
        for word in f.readlines():
            stopwords.append(word[:-1])
    seg_text = jieba.cut(data)
    text = [word for word in seg_text if word not in stopwords]
    text_list.append(' '.join(text))
    return text_list


def read_categories():
    """读取类别"""
    with open(config.categories_save_path, 'r', encoding='utf-8') as f:
        categories = f.readlines()
    return categories[0].split('|')


def predict_line(data, categories):
    """预测结果"""
    session = tf.Session()
    session.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(sess=session, save_path=config.lr_save_path)
    y_pred_cls = session.run(model.y_pred_cls, feed_dict={model.x: data})
    return categories[y_pred_cls[0]]


if __name__ == "__main__":
    data = "教育"
    config = LrConfig()
    line = pre_data(data, config)
    tfidf_model = joblib.load(config.tfidf_model_save_path)
    X_test = tfidf_model.transform(line).toarray()
    model = LrModel(config, len(X_test[0]))
    categories = read_categories()
    print(predict_line(X_test, categories))

总共分了十个类别。对于你想预测的文本进行类型判断。

 

 

如果机器有情感....

下面是生成对话机器人:

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/868603.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-13
下一篇 2022-05-13

发表评论

登录后才能评论

评论列表(0条)

保存