Error[8]: Undefined offset: 2147, File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 121
File: /www/wwwroot/outofmemory.cn/tmp/plugin_ss_superseo_model_superseo.php, Line: 473, decode(

Introduction

数据是美丽的,当然,如果你能真正理解它想告诉你的内容,还需要借助可视化的工具。

通过借助数据可视化的作品,将数据以视觉的形式来呈现,如图表或地图,以帮助人们了解数据的意义。通过观察数字、统计数据的转换以获得清晰的结论并不是一件容易的事。而人类大脑对视觉信息的处理优于对文本的处理,因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释数据模式、趋势、统计数据和数据相关性。

博主一些可视化作品见下面链接:
Python 画图,点线图;
Python 画图,柱状图;
python matplotlib 画图(柱状图)总结;
数据可视化之美-动态图绘制(以Python为工具)

这篇博客借助Python工具,展现一些可视化过程(包含源码),主要是点、线、面的组和。由于博主专业方向为地学相关,所以关注的方向主要为地学方面的文献、代码,其他专业方向也可借鉴。

精彩可视化作品展示 Example1:大气场的组合

这是一幅非常综合的天气图,包含要素(MSLP:平均大气压强,红色线表示;850 hPa的风场,黑色箭头表示;500 hPa 的位势高度,黑线表示;还有三种颜色的 colormap 表示2种变量)

Example2:南海地形展现

左图是南海包含西北太平洋的范围,colormap 显示的是水深;右图是范围缩小,南海区域,以及在图中用蓝色虚线表示南海内的环流。

Example3:小波分析图

一般情况下,小波周期图水平轴对应原来时间序列的时间,垂直轴代表变化的周期,颜色代表变化周期的强度。该图里,黄色代表变化周期的高强度。在最上面的图中表示2个变量的时间序列(Alongstream Velocity、Cross-Stream Velocity),下面的2张图中为该2个变量的小波分析,随着时间序列的变化,变化周期的强度变化。

Example4:多图要素集合

(a)图为利用模式输出数据绘制,模式结果分成(图中3D成图可明显看到分层)【PASS:三维成图后面的博客专门去讲,这次主要讲2D成图】;(b)表示海水位势温度(-156米处);(c)航迹的温度剖面(船行轨迹见a图);(d)航线的平面图

成图测试(包含代码、数据) Test1:绘制2个信号的相干性
import numpy as np
import matplotlib.pyplot as plt

# Fixing random state for reproducibility
np.random.seed(19680801)

dt = 0.01
t = np.arange(0, 30, dt)
nse1 = np.random.randn(len(t))                 # white noise 1
nse2 = np.random.randn(len(t))                 # white noise 2

# Two signals with a coherent part at 10Hz and a random part
s1 = np.sin(2 * np.pi * 10 * t) + nse1
s2 = np.sin(2 * np.pi * 10 * t) + nse2

fig, axs = plt.subplots(2, 1)
axs[0].plot(t, s1, t, s2)
axs[0].set_xlim(0, 2)
axs[0].set_xlabel('time')
axs[0].set_ylabel('s1 and s2')
axs[0].grid(True)

cxy, f = axs[1].cohere(s1, s2, 256, 1. / dt)
axs[1].set_ylabel('coherence')

fig.tight_layout()
# plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=0.20,hspace=0.20)

plt.savefig(fname="./Test1.png", dpi=300)
plt.show()

Test2:小波分析
from __future__ import division
import numpy
from matplotlib import pyplot

import pycwt as wavelet
from pycwt.helpers import find

url = 'http://paos.colorado.edu/research/wavelets/wave_idl/nino3sst.txt'
dat = numpy.genfromtxt(url, skip_header=19)
title = 'NINO3 Sea Surface Temperature'
label = 'NINO3 SST'
units = 'degC'
t0 = 1871.0
dt = 0.25  # 获取NINO数据

# We also create a time array in years.
N = dat.size
t = numpy.arange(0, N) * dt + t0

p = numpy.polyfit(t - t0, dat, 1)
dat_notrend = dat - numpy.polyval(p, t - t0)
std = dat_notrend.std()  # Standard deviation
var = std ** 2  # Variance
dat_norm = dat_notrend / std  # Normalized dataset


mother = wavelet.Morlet(6)
s0 = 2 * dt  # Starting scale, in this case 2 * 0.25 years = 6 months
dj = 1 / 12  # Twelve sub-octaves per octaves
J = 7 / dj  # Seven powers of two with dj sub-octaves
alpha, _, _ = wavelet.ar1(dat)  # Lag-1 autocorrelation for red noise


wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt(dat_norm, dt, dj, s0, J,
                                                      mother)
iwave = wavelet.icwt(wave, scales, dt, dj, mother) * std

power = (numpy.abs(wave)) ** 2
fft_power = numpy.abs(fft) ** 2
period = 1 / freqs

signif, fft_theor = wavelet.significance(1.0, dt, scales, 0, alpha,
                                         significance_level=0.95,
                                         wavelet=mother)
sig95 = numpy.ones([1, N]) * signif[:, None]
sig95 = power / sig95

glbl_power = power.mean(axis=1)
dof = N - scales  # Correction for padding at edges
glbl_signif, tmp = wavelet.significance(var, dt, scales, 1, alpha,
                                        significance_level=0.95, dof=dof,
                                        wavelet=mother)

sel = find((period >= 2) & (period < 8))
Cdelta = mother.cdelta
scale_avg = (scales * numpy.ones((N, 1))).transpose()
scale_avg = power / scale_avg  # As in Torrence and Compo (1998) equation 24
scale_avg = var * dj * dt / Cdelta * scale_avg[sel, :].sum(axis=0)
scale_avg_signif, tmp = wavelet.significance(var, dt, scales, 2, alpha,
                                             significance_level=0.95,
                                             dof=[scales[sel[0]],
                                                  scales[sel[-1]]],
                                             wavelet=mother)

# Prepare the figure
pyplot.close('all')
pyplot.ioff()
figprops = dict(figsize=(11, 8), dpi=72)
fig = pyplot.figure(**figprops)


# First sub-plot, the original time series anomaly and inverse wavelet
# transform.
ax = pyplot.axes([0.1, 0.75, 0.65, 0.2])
ax.plot(t, iwave, '-', linewidth=1, color=[0.5, 0.5, 0.5])
ax.plot(t, dat, 'k', linewidth=1.5)
ax.set_title('a) {}'.format(title))
ax.set_ylabel(r'{} [{}]'.format(label, units))

# Second sub-plot, the normalized wavelet power spectrum and significance
# level contour lines and cone of influece hatched area. Note that period
# scale is logarithmic.
bx = pyplot.axes([0.1, 0.37, 0.65, 0.28], sharex=ax)
levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
bx.contourf(t, numpy.log2(period), numpy.log2(power), numpy.log2(levels),
            extend='both', cmap=pyplot.cm.viridis)
extent = [t.min(), t.max(), 0, max(period)]
bx.contour(t, numpy.log2(period), sig95, [-99, 1], colors='k', linewidths=2,
           extent=extent)
bx.fill(numpy.concatenate([t, t[-1:] + dt, t[-1:] + dt,
                           t[:1] - dt, t[:1] - dt]),
        numpy.concatenate([numpy.log2(coi), [1e-9], numpy.log2(period[-1:]),
                           numpy.log2(period[-1:]), [1e-9]]),
        'k', alpha=0.3, hatch='x')
bx.set_title('b) {} Wavelet Power Spectrum ({})'.format(label, mother.name))
bx.set_ylabel('Period (years)')
#
Yticks = 2 ** numpy.arange(numpy.ceil(numpy.log2(period.min())),
                           numpy.ceil(numpy.log2(period.max())))
bx.set_yticks(numpy.log2(Yticks))
bx.set_yticklabels(Yticks)

# Third sub-plot, the global wavelet and Fourier power spectra and theoretical
# noise spectra. Note that period scale is logarithmic.
cx = pyplot.axes([0.77, 0.37, 0.2, 0.28], sharey=bx)
cx.plot(glbl_signif, numpy.log2(period), 'k--')
cx.plot(var * fft_theor, numpy.log2(period), '--', color='#cccccc')
cx.plot(var * fft_power, numpy.log2(1./fftfreqs), '-', color='#cccccc',
        linewidth=1.)
cx.plot(var * glbl_power, numpy.log2(period), 'k-', linewidth=1.5)
cx.set_title('c) Global Wavelet Spectrum')
cx.set_xlabel(r'Power [({})^2]'.format(units))
cx.set_xlim([0, glbl_power.max() + var])
cx.set_ylim(numpy.log2([period.min(), period.max()]))
cx.set_yticks(numpy.log2(Yticks))
cx.set_yticklabels(Yticks)
pyplot.setp(cx.get_yticklabels(), visible=False)

# Fourth sub-plot, the scale averaged wavelet spectrum.
dx = pyplot.axes([0.1, 0.07, 0.65, 0.2], sharex=ax)
dx.axhline(scale_avg_signif, color='k', linestyle='--', linewidth=1.)
dx.plot(t, scale_avg, 'k-', linewidth=1.5)
dx.set_title('d) {}--{} year scale-averaged power'.format(2, 8))
dx.set_xlabel('Time (year)')
dx.set_ylabel(r'Average variance [{}]'.format(units))
ax.set_xlim([t.min(), t.max()])

pyplot.savefig(fname="./wavelets.png", dpi=300)
pyplot.show()

该图说明:最上面图形(a)是Nino3 区域的海水表面温度的时间序列(黑色)以及逆小波变换(灰色);(b)图为该Nino3 时间序列的小波周期图。(c) 全局小波功率谱(黑线)和傅里叶功率谱(灰线)。虚线表示95%置信水平。(d) 2-8年波段尺度平均小波功率(黑线)、功率趋势(灰线)。

Test3:柱状图与图表结合
import numpy as np
import matplotlib.pyplot as plt

data = [[ 66386, 174296,  75131, 577908,  32015],
        [ 58230, 381139,  78045,  99308, 160454],
        [ 89135,  80552, 152558, 497981, 603535],
        [ 78415,  81858, 150656, 193263,  69638],
        [139361, 331509, 343164, 781380,  52269]]

columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
rows = ['%d year' % x for x in (100, 50, 20, 10, 5)]

values = np.arange(0, 2500, 500)
value_increment = 1000

# Get some pastel shades for the colors
colors = plt.cm.BuPu(np.linspace(0, 0.5, len(rows)))
n_rows = len(data)

index = np.arange(len(columns)) + 0.3
bar_width = 0.4

# Initialize the vertical-offset for the stacked bar chart.
y_offset = np.zeros(len(columns))

# Plot bars and create text labels for the table
cell_text = []
for row in range(n_rows):
    plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row])
    y_offset = y_offset + data[row]
    cell_text.append(['%1.1f' % (x / 1000.0) for x in y_offset])
# Reverse colors and text labels to display the last value at the top.
colors = colors[::-1]
cell_text.reverse()

# Add a table at the bottom of the axes
the_table = plt.table(cellText=cell_text,
                      rowLabels=rows,
                      rowColours=colors,
                      colLabels=columns,
                      loc='bottom')

# Adjust layout to make room for the table:
plt.subplots_adjust(left=0.2, bottom=0.2)

plt.ylabel("Loss in .'s"format()value_increment).
plt(yticks*values , value_increment[ '%d'% for val in val ] values).
plt(xticks[]).
plt(title'Loss by Disaster').

plt(savefig=fname"./test3.png",= dpi300).
plt(show)import

Test4:等值线图
. matplotlibaspyplot import plt
. matplotlibastri import tri
as numpy . np

np.random(seed19680801)=
npts 200 =
ngridx 100 =
ngridy 200 =
x . np.random(uniform-2,2 ,) npts=
y . np.random(uniform-2,2 ,) npts=
z * x . np(exp-**x2- ** y2),

fig( ,ax1) ax2= . plt(subplots=nrows2)# Create grid values first.

=
xi . np(linspace-2.1,2.1 ,) ngridx=
yi . np(linspace-2.1,2.1 ,) ngridy# Linearly interpolate the data (x, y) on a grid defined by (xi, yi).

=
triang . tri(Triangulation,x) y=
interpolator . tri(LinearTriInterpolator,triang) z,
Xi= Yi . np(meshgrid,xi) yi=
zi ( interpolator,Xi) Yi# Note that scipy.interpolate provides means to interpolate data on a grid

# as well. The following would be an alternative to the four lines above:
# from scipy.interpolate import griddata
# zi = griddata((x, y), z, (xi[None, :], yi[:, None]), method='linear')
.

ax1(contour,xi, yi, zi= levels14,= linewidths0.5,= colors'k')=
cntr1 . ax1(contourf,xi, yi, zi= levels14,= cmap"RdBu_r").

fig(colorbar,cntr1= ax)ax1.
ax1(plot,x, y'ko' ,= ms3).
ax1set(=xlim(-2,2 ),= ylim(-2,2 )).
ax1(set_title'grid and contour (%d points, %d grid points)'% (
              ,npts* ngridx ) ngridy)# Tricontour

.

ax2(tricontour,x, y, z= levels14,= linewidths0.5,= colors'k')=
cntr2 . ax2(tricontourf,x, y, z= levels14,= cmap"RdBu_r").

fig(colorbar,cntr2= ax)ax2.
ax2(plot,x, y'ko' ,= ms3).
ax2set(=xlim(-2,2 ),= ylim(-2,2 )).
ax2(set_title'tricontour (%d points)'% ) npts.

plt(subplots_adjust=hspace0.5).

plt(savefig=fname"./test4.png",= dpi300).
plt(show)import

上面的图是先正交网格化,再将黑点的值插值在网格上,下面的图是三角网格插值。

Test5:散点图+直方图 (seaborn出图)
as pandas import pd
. matplotlibaspyplot # Import Data plt

=
df . pd(read_csv"https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")# Create Fig and gridspec

=
fig . plt(figure=figsize(16,10 ),= dpi80 )=
grid . plt(GridSpec4,4 ,= hspace0.5,= wspace0.2)# Define the axes

=
ax_main . fig(add_subplot[grid:-1,: -1])=
ax_right . fig(add_subplot[grid:-1,- 1],= xticklabels[],= yticklabels[])=
ax_bottom . fig(add_subplot[grid-1,0 :-1],= xticklabels[],= yticklabels[])# Scatterplot on main ax

.
ax_main(scatter'displ','hwy' ,= s.df*cty4,= c.df.manufacturer(astype'category')..cat,codes= alpha.9,= data,df= cmap"tab10",= edgecolors'gray',= linewidths.5)# histogram on the right


.
ax_bottom(hist.df,displ40 ,= histtype'stepfilled',= orientation'vertical',= color'deeppink').
ax_bottom(invert_yaxis)# histogram in the bottom


.
ax_right(hist.df,hwy40 ,= histtype'stepfilled',= orientation'horizontal',= color'deeppink')# Decorations


.
ax_mainset(=title'Scatterplot with Histograms displ vs hwy',= xlabel'displ',= ylabel'hwy').
ax_main.title(set_fontsize20)for
in item ( [.ax_main.xaxis,label. ax_main.yaxis]label+ . ax_main(get_xticklabels)+ . ax_main(get_yticklabels)):.
    item(set_fontsize14)=

xlabels . ax_main(get_xticks).(tolist).
ax_main(set_xticklabels)xlabels.
plt(show)import

边缘直方图具有沿X和Y轴变量的直方图。这用于可视化X和Y之间的关系(中间的点图)以及单独的X和Y的单变量分布。该图如果经常用于探索性数据分析。该图中点的颜色不同表示类别。

下面是另一种绘制方法:

as numpy import np
. matplotlibaspyplot # Fixing random state for reproducibility plt

.
np.random(seed19680801)# some random data

=
x . np.random(randn1000)=
y . np.random(randn1000)def

scatter_hist (,x, y, ax, ax_histx) ax_histy:# no labels
    .
    ax_histx(tick_params=axis"x",= labelbottomFalse).
    ax_histy(tick_params=axis"y",= labelleftFalse)# the scatter plot:

    .
    ax(scatter,x) y# now determine nice limits by hand:

    =
    binwidth 0.25 =
    xymax max (.npmax(.npabs()x),. npmax(.npabs()y))=
    lim ( int(/xymax)binwidth+ 1 )* = binwidth


    bins . np(arange-,lim+ lim , binwidth) binwidth.
    ax_histx(hist,x= bins)bins.
    ax_histy(hist,y= bins,bins= orientation'horizontal')# definitions for the axes

,
left= width 0.1 ,0.65 ,
bottom= height 0.1 ,0.65 =
spacing 0.005 =


rect_scatter [ ,left, bottom, width] height=
rect_histx [ ,left+ bottom + height , spacing, width0.2 ]=
rect_histy [ +left + width , spacing, bottom0.2 ,] height# start with a square Figure

=
fig . plt(figure=figsize(8,8 ))# 添加统一的网格显示大小,不过在这里显示不明显

=

gs . fig(add_gridspec2,2 ,=  width_ratios(7,2 ),= height_ratios(2,7 ),=
                      left0.1,= right0.9,= bottom0.1,= top0.9,=
                      wspace0.05,= hspace0.05)=

ax . fig(add_subplot[gs1,0 ])=
ax_histx . fig(add_subplot[gs0,0 ],= sharex)ax=
ax_histy . fig(add_subplot[gs1,1 ],= sharey)ax# use the previously defined function

(
scatter_hist,x, y, ax, ax_histx) ax_histy.

plt(savefig=fname"./test5_v2.png",= dpi300).
plt(show)import

Test6:带线性回归最佳拟合线的散点图(seaborn出图)
as pandas import pd
. matplotlibaspyplot import plt
as seaborn # Import Data sns

=
df . pd(read_csv"https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")=
df_select . df[loc.df.cyl(isin[4,8]),: ]# Plot


.
sns(set_style"white")=
gridobj . sns(lmplot=x"displ",= y"hwy",= hue"cyl",= data,df_select=
                     height7,= aspect1.6,= robustTrue,= palette'tab10',=
                     scatter_kwsdict(=s60,= linewidths.7,= edgecolors'black'))# Decorations

.
gridobjset(=xlim(0.5,7.5 ),= ylim(0,50 )).
plt(title"Scatterplot with line of best fit grouped by number of cylinders",= fontsize20)import

如果你想了解变量的变化趋势,那么最合适的方式就是画趋势线。上图显示了数据中各组之间最佳拟合线的差异(包含置信区间)。
下面是另一种绘制方法:

as numpy import np
. matplotlibaspyplot = plt

N 21 =
x . np(linspace0,10 ,11 )=
y [ 3.9,4.4 ,10.8 ,10.3 ,11.2 ,13.1 ,14.1 ,9.9  ,13.9 ,15.1 ,12.5 ]# fit a linear curve an estimate its y-values and their error.

,
a= b . np(polyfit,x, y= deg1)=
y_est * a + x = b
y_err . x(std)* . np(sqrt1/len()x+ (
                          -x . x(mean))**2/ . npsum((-x . x(mean))**2)),

fig= ax . plt(subplots).
ax(plot,x, y_est'-' ).
ax(fill_between,x- y_est , y_err+ y_est , y_err= alpha0.2).
ax(plot,x, y'o' ,= color'tab:brown').

plt(savefig=fname"./test6_v2.png",= dpi300).
plt(show)[+++]

References:

【1】 Python matplotlib官方链接
【2】 Python matplotlib 25个可视化案例

)
File: /www/wwwroot/outofmemory.cn/tmp/route_read.php, Line: 126, InsideLink()
File: /www/wwwroot/outofmemory.cn/tmp/index.inc.php, Line: 165, include(/www/wwwroot/outofmemory.cn/tmp/route_read.php)
File: /www/wwwroot/outofmemory.cn/index.php, Line: 30, include(/www/wwwroot/outofmemory.cn/tmp/index.inc.php)
数据可视化之美+点、线、面组合(以Python为工具)_python_内存溢出

数据可视化之美+点、线、面组合(以Python为工具)

数据可视化之美+点、线、面组合(以Python为工具),第1张

Introduction

数据是美丽的,当然,如果你能真正理解它想告诉你的内容,还需要借助可视化的工具。

通过借助数据可视化的作品,将数据以视觉的形式来呈现,如图表或地图,以帮助人们了解数据的意义。通过观察数字、统计数据的转换以获得清晰的结论并不是一件容易的事。而人类大脑对视觉信息的处理优于对文本的处理,因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释数据模式、趋势、统计数据和数据相关性。

博主一些可视化作品见下面链接:
Python 画图,点线图;
Python 画图,柱状图;
python matplotlib 画图(柱状图)总结;
数据可视化之美-动态图绘制(以Python为工具)

这篇博客借助Python工具,展现一些可视化过程(包含源码),主要是点、线、面的组和。由于博主专业方向为地学相关,所以关注的方向主要为地学方面的文献、代码,其他专业方向也可借鉴。

精彩可视化作品展示 Example1:大气场的组合

这是一幅非常综合的天气图,包含要素(MSLP:平均大气压强,红色线表示;850 hPa的风场,黑色箭头表示;500 hPa 的位势高度,黑线表示;还有三种颜色的 colormap 表示2种变量)

Example2:南海地形展现

左图是南海包含西北太平洋的范围,colormap 显示的是水深;右图是范围缩小,南海区域,以及在图中用蓝色虚线表示南海内的环流。

Example3:小波分析图

一般情况下,小波周期图水平轴对应原来时间序列的时间,垂直轴代表变化的周期,颜色代表变化周期的强度。该图里,黄色代表变化周期的高强度。在最上面的图中表示2个变量的时间序列(Alongstream Velocity、Cross-Stream Velocity),下面的2张图中为该2个变量的小波分析,随着时间序列的变化,变化周期的强度变化。

Example4:多图要素集合

(a)图为利用模式输出数据绘制,模式结果分成(图中3D成图可明显看到分层)【PASS:三维成图后面的博客专门去讲,这次主要讲2D成图】;(b)表示海水位势温度(-156米处);(c)航迹的温度剖面(船行轨迹见a图);(d)航线的平面图

成图测试(包含代码、数据) Test1:绘制2个信号的相干性
import numpy as np
import matplotlib.pyplot as plt

# Fixing random state for reproducibility
np.random.seed(19680801)

dt = 0.01
t = np.arange(0, 30, dt)
nse1 = np.random.randn(len(t))                 # white noise 1
nse2 = np.random.randn(len(t))                 # white noise 2

# Two signals with a coherent part at 10Hz and a random part
s1 = np.sin(2 * np.pi * 10 * t) + nse1
s2 = np.sin(2 * np.pi * 10 * t) + nse2

fig, axs = plt.subplots(2, 1)
axs[0].plot(t, s1, t, s2)
axs[0].set_xlim(0, 2)
axs[0].set_xlabel('time')
axs[0].set_ylabel('s1 and s2')
axs[0].grid(True)

cxy, f = axs[1].cohere(s1, s2, 256, 1. / dt)
axs[1].set_ylabel('coherence')

fig.tight_layout()
# plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=0.20,hspace=0.20)

plt.savefig(fname="./Test1.png", dpi=300)
plt.show()

Test2:小波分析
from __future__ import division
import numpy
from matplotlib import pyplot

import pycwt as wavelet
from pycwt.helpers import find

url = 'http://paos.colorado.edu/research/wavelets/wave_idl/nino3sst.txt'
dat = numpy.genfromtxt(url, skip_header=19)
title = 'NINO3 Sea Surface Temperature'
label = 'NINO3 SST'
units = 'degC'
t0 = 1871.0
dt = 0.25  # 获取NINO数据

# We also create a time array in years.
N = dat.size
t = numpy.arange(0, N) * dt + t0

p = numpy.polyfit(t - t0, dat, 1)
dat_notrend = dat - numpy.polyval(p, t - t0)
std = dat_notrend.std()  # Standard deviation
var = std ** 2  # Variance
dat_norm = dat_notrend / std  # Normalized dataset


mother = wavelet.Morlet(6)
s0 = 2 * dt  # Starting scale, in this case 2 * 0.25 years = 6 months
dj = 1 / 12  # Twelve sub-octaves per octaves
J = 7 / dj  # Seven powers of two with dj sub-octaves
alpha, _, _ = wavelet.ar1(dat)  # Lag-1 autocorrelation for red noise


wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt(dat_norm, dt, dj, s0, J,
                                                      mother)
iwave = wavelet.icwt(wave, scales, dt, dj, mother) * std

power = (numpy.abs(wave)) ** 2
fft_power = numpy.abs(fft) ** 2
period = 1 / freqs

signif, fft_theor = wavelet.significance(1.0, dt, scales, 0, alpha,
                                         significance_level=0.95,
                                         wavelet=mother)
sig95 = numpy.ones([1, N]) * signif[:, None]
sig95 = power / sig95

glbl_power = power.mean(axis=1)
dof = N - scales  # Correction for padding at edges
glbl_signif, tmp = wavelet.significance(var, dt, scales, 1, alpha,
                                        significance_level=0.95, dof=dof,
                                        wavelet=mother)

sel = find((period >= 2) & (period < 8))
Cdelta = mother.cdelta
scale_avg = (scales * numpy.ones((N, 1))).transpose()
scale_avg = power / scale_avg  # As in Torrence and Compo (1998) equation 24
scale_avg = var * dj * dt / Cdelta * scale_avg[sel, :].sum(axis=0)
scale_avg_signif, tmp = wavelet.significance(var, dt, scales, 2, alpha,
                                             significance_level=0.95,
                                             dof=[scales[sel[0]],
                                                  scales[sel[-1]]],
                                             wavelet=mother)

# Prepare the figure
pyplot.close('all')
pyplot.ioff()
figprops = dict(figsize=(11, 8), dpi=72)
fig = pyplot.figure(**figprops)


# First sub-plot, the original time series anomaly and inverse wavelet
# transform.
ax = pyplot.axes([0.1, 0.75, 0.65, 0.2])
ax.plot(t, iwave, '-', linewidth=1, color=[0.5, 0.5, 0.5])
ax.plot(t, dat, 'k', linewidth=1.5)
ax.set_title('a) {}'.format(title))
ax.set_ylabel(r'{} [{}]'.format(label, units))

# Second sub-plot, the normalized wavelet power spectrum and significance
# level contour lines and cone of influece hatched area. Note that period
# scale is logarithmic.
bx = pyplot.axes([0.1, 0.37, 0.65, 0.28], sharex=ax)
levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
bx.contourf(t, numpy.log2(period), numpy.log2(power), numpy.log2(levels),
            extend='both', cmap=pyplot.cm.viridis)
extent = [t.min(), t.max(), 0, max(period)]
bx.contour(t, numpy.log2(period), sig95, [-99, 1], colors='k', linewidths=2,
           extent=extent)
bx.fill(numpy.concatenate([t, t[-1:] + dt, t[-1:] + dt,
                           t[:1] - dt, t[:1] - dt]),
        numpy.concatenate([numpy.log2(coi), [1e-9], numpy.log2(period[-1:]),
                           numpy.log2(period[-1:]), [1e-9]]),
        'k', alpha=0.3, hatch='x')
bx.set_title('b) {} Wavelet Power Spectrum ({})'.format(label, mother.name))
bx.set_ylabel('Period (years)')
#
Yticks = 2 ** numpy.arange(numpy.ceil(numpy.log2(period.min())),
                           numpy.ceil(numpy.log2(period.max())))
bx.set_yticks(numpy.log2(Yticks))
bx.set_yticklabels(Yticks)

# Third sub-plot, the global wavelet and Fourier power spectra and theoretical
# noise spectra. Note that period scale is logarithmic.
cx = pyplot.axes([0.77, 0.37, 0.2, 0.28], sharey=bx)
cx.plot(glbl_signif, numpy.log2(period), 'k--')
cx.plot(var * fft_theor, numpy.log2(period), '--', color='#cccccc')
cx.plot(var * fft_power, numpy.log2(1./fftfreqs), '-', color='#cccccc',
        linewidth=1.)
cx.plot(var * glbl_power, numpy.log2(period), 'k-', linewidth=1.5)
cx.set_title('c) Global Wavelet Spectrum')
cx.set_xlabel(r'Power [({})^2]'.format(units))
cx.set_xlim([0, glbl_power.max() + var])
cx.set_ylim(numpy.log2([period.min(), period.max()]))
cx.set_yticks(numpy.log2(Yticks))
cx.set_yticklabels(Yticks)
pyplot.setp(cx.get_yticklabels(), visible=False)

# Fourth sub-plot, the scale averaged wavelet spectrum.
dx = pyplot.axes([0.1, 0.07, 0.65, 0.2], sharex=ax)
dx.axhline(scale_avg_signif, color='k', linestyle='--', linewidth=1.)
dx.plot(t, scale_avg, 'k-', linewidth=1.5)
dx.set_title('d) {}--{} year scale-averaged power'.format(2, 8))
dx.set_xlabel('Time (year)')
dx.set_ylabel(r'Average variance [{}]'.format(units))
ax.set_xlim([t.min(), t.max()])

pyplot.savefig(fname="./wavelets.png", dpi=300)
pyplot.show()

该图说明:最上面图形(a)是Nino3 区域的海水表面温度的时间序列(黑色)以及逆小波变换(灰色);(b)图为该Nino3 时间序列的小波周期图。(c) 全局小波功率谱(黑线)和傅里叶功率谱(灰线)。虚线表示95%置信水平。(d) 2-8年波段尺度平均小波功率(黑线)、功率趋势(灰线)。

Test3:柱状图与图表结合
import numpy as np
import matplotlib.pyplot as plt

data = [[ 66386, 174296,  75131, 577908,  32015],
        [ 58230, 381139,  78045,  99308, 160454],
        [ 89135,  80552, 152558, 497981, 603535],
        [ 78415,  81858, 150656, 193263,  69638],
        [139361, 331509, 343164, 781380,  52269]]

columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
rows = ['%d year' % x for x in (100, 50, 20, 10, 5)]

values = np.arange(0, 2500, 500)
value_increment = 1000

# Get some pastel shades for the colors
colors = plt.cm.BuPu(np.linspace(0, 0.5, len(rows)))
n_rows = len(data)

index = np.arange(len(columns)) + 0.3
bar_width = 0.4

# Initialize the vertical-offset for the stacked bar chart.
y_offset = np.zeros(len(columns))

# Plot bars and create text labels for the table
cell_text = []
for row in range(n_rows):
    plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row])
    y_offset = y_offset + data[row]
    cell_text.append(['%1.1f' % (x / 1000.0) for x in y_offset])
# Reverse colors and text labels to display the last value at the top.
colors = colors[::-1]
cell_text.reverse()

# Add a table at the bottom of the axes
the_table = plt.table(cellText=cell_text,
                      rowLabels=rows,
                      rowColours=colors,
                      colLabels=columns,
                      loc='bottom')

# Adjust layout to make room for the table:
plt.subplots_adjust(left=0.2, bottom=0.2)

plt.ylabel("Loss in .'s"format()value_increment).
plt(yticks*values , value_increment[ '%d'% for val in val ] values).
plt(xticks[]).
plt(title'Loss by Disaster').

plt(savefig=fname"./test3.png",= dpi300).
plt(show)import

Test4:等值线图
. matplotlibaspyplot import plt
. matplotlibastri import tri
as numpy . np

np.random(seed19680801)=
npts 200 =
ngridx 100 =
ngridy 200 =
x . np.random(uniform-2,2 ,) npts=
y . np.random(uniform-2,2 ,) npts=
z * x . np(exp-**x2- ** y2),

fig( ,ax1) ax2= . plt(subplots=nrows2)# Create grid values first.

=
xi . np(linspace-2.1,2.1 ,) ngridx=
yi . np(linspace-2.1,2.1 ,) ngridy# Linearly interpolate the data (x, y) on a grid defined by (xi, yi).

=
triang . tri(Triangulation,x) y=
interpolator . tri(LinearTriInterpolator,triang) z,
Xi= Yi . np(meshgrid,xi) yi=
zi ( interpolator,Xi) Yi# Note that scipy.interpolate provides means to interpolate data on a grid

# as well. The following would be an alternative to the four lines above:
# from scipy.interpolate import griddata
# zi = griddata((x, y), z, (xi[None, :], yi[:, None]), method='linear')
.

ax1(contour,xi, yi, zi= levels14,= linewidths0.5,= colors'k')=
cntr1 . ax1(contourf,xi, yi, zi= levels14,= cmap"RdBu_r").

fig(colorbar,cntr1= ax)ax1.
ax1(plot,x, y'ko' ,= ms3).
ax1set(=xlim(-2,2 ),= ylim(-2,2 )).
ax1(set_title'grid and contour (%d points, %d grid points)'% (
              ,npts* ngridx ) ngridy)# Tricontour

.

ax2(tricontour,x, y, z= levels14,= linewidths0.5,= colors'k')=
cntr2 . ax2(tricontourf,x, y, z= levels14,= cmap"RdBu_r").

fig(colorbar,cntr2= ax)ax2.
ax2(plot,x, y'ko' ,= ms3).
ax2set(=xlim(-2,2 ),= ylim(-2,2 )).
ax2(set_title'tricontour (%d points)'% ) npts.

plt(subplots_adjust=hspace0.5).

plt(savefig=fname"./test4.png",= dpi300).
plt(show)import

上面的图是先正交网格化,再将黑点的值插值在网格上,下面的图是三角网格插值。

Test5:散点图+直方图 (seaborn出图)
as pandas import pd
. matplotlibaspyplot # Import Data plt

=
df . pd(read_csv"https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")# Create Fig and gridspec

=
fig . plt(figure=figsize(16,10 ),= dpi80 )=
grid . plt(GridSpec4,4 ,= hspace0.5,= wspace0.2)# Define the axes

=
ax_main . fig(add_subplot[grid:-1,: -1])=
ax_right . fig(add_subplot[grid:-1,- 1],= xticklabels[],= yticklabels[])=
ax_bottom . fig(add_subplot[grid-1,0 :-1],= xticklabels[],= yticklabels[])# Scatterplot on main ax

.
ax_main(scatter'displ','hwy' ,= s.df*cty4,= c.df.manufacturer(astype'category')..cat,codes= alpha.9,= data,df= cmap"tab10",= edgecolors'gray',= linewidths.5)# histogram on the right


.
ax_bottom(hist.df,displ40 ,= histtype'stepfilled',= orientation'vertical',= color'deeppink').
ax_bottom(invert_yaxis)# histogram in the bottom


.
ax_right(hist.df,hwy40 ,= histtype'stepfilled',= orientation'horizontal',= color'deeppink')# Decorations


.
ax_mainset(=title'Scatterplot with Histograms displ vs hwy',= xlabel'displ',= ylabel'hwy').
ax_main.title(set_fontsize20)for
in item ( [.ax_main.xaxis,label. ax_main.yaxis]label+ . ax_main(get_xticklabels)+ . ax_main(get_yticklabels)):.
    item(set_fontsize14)=

xlabels . ax_main(get_xticks).(tolist).
ax_main(set_xticklabels)xlabels.
plt(show)import

边缘直方图具有沿X和Y轴变量的直方图。这用于可视化X和Y之间的关系(中间的点图)以及单独的X和Y的单变量分布。该图如果经常用于探索性数据分析。该图中点的颜色不同表示类别。

下面是另一种绘制方法:

as numpy import np
. matplotlibaspyplot # Fixing random state for reproducibility plt

.
np.random(seed19680801)# some random data

=
x . np.random(randn1000)=
y . np.random(randn1000)def

scatter_hist (,x, y, ax, ax_histx) ax_histy:# no labels
    .
    ax_histx(tick_params=axis"x",= labelbottomFalse).
    ax_histy(tick_params=axis"y",= labelleftFalse)# the scatter plot:

    .
    ax(scatter,x) y# now determine nice limits by hand:

    =
    binwidth 0.25 =
    xymax max (.npmax(.npabs()x),. npmax(.npabs()y))=
    lim ( int(/xymax)binwidth+ 1 )* = binwidth


    bins . np(arange-,lim+ lim , binwidth) binwidth.
    ax_histx(hist,x= bins)bins.
    ax_histy(hist,y= bins,bins= orientation'horizontal')# definitions for the axes

,
left= width 0.1 ,0.65 ,
bottom= height 0.1 ,0.65 =
spacing 0.005 =


rect_scatter [ ,left, bottom, width] height=
rect_histx [ ,left+ bottom + height , spacing, width0.2 ]=
rect_histy [ +left + width , spacing, bottom0.2 ,] height# start with a square Figure

=
fig . plt(figure=figsize(8,8 ))# 添加统一的网格显示大小,不过在这里显示不明显

=

gs . fig(add_gridspec2,2 ,=  width_ratios(7,2 ),= height_ratios(2,7 ),=
                      left0.1,= right0.9,= bottom0.1,= top0.9,=
                      wspace0.05,= hspace0.05)=

ax . fig(add_subplot[gs1,0 ])=
ax_histx . fig(add_subplot[gs0,0 ],= sharex)ax=
ax_histy . fig(add_subplot[gs1,1 ],= sharey)ax# use the previously defined function

(
scatter_hist,x, y, ax, ax_histx) ax_histy.

plt(savefig=fname"./test5_v2.png",= dpi300).
plt(show)import

Test6:带线性回归最佳拟合线的散点图(seaborn出图)
as pandas import pd
. matplotlibaspyplot import plt
as seaborn # Import Data sns

=
df . pd(read_csv"https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")=
df_select . df[loc.df.cyl(isin[4,8]),: ]# Plot


.
sns(set_style"white")=
gridobj . sns(lmplot=x"displ",= y"hwy",= hue"cyl",= data,df_select=
                     height7,= aspect1.6,= robustTrue,= palette'tab10',=
                     scatter_kwsdict(=s60,= linewidths.7,= edgecolors'black'))# Decorations

.
gridobjset(=xlim(0.5,7.5 ),= ylim(0,50 )).
plt(title"Scatterplot with line of best fit grouped by number of cylinders",= fontsize20)import

如果你想了解变量的变化趋势,那么最合适的方式就是画趋势线。上图显示了数据中各组之间最佳拟合线的差异(包含置信区间)。
下面是另一种绘制方法:

as numpy import np
. matplotlibaspyplot = plt

N 21 =
x . np(linspace0,10 ,11 )=
y [ 3.9,4.4 ,10.8 ,10.3 ,11.2 ,13.1 ,14.1 ,9.9  ,13.9 ,15.1 ,12.5 ]# fit a linear curve an estimate its y-values and their error.

,
a= b . np(polyfit,x, y= deg1)=
y_est * a + x = b
y_err . x(std)* . np(sqrt1/len()x+ (
                          -x . x(mean))**2/ . npsum((-x . x(mean))**2)),

fig= ax . plt(subplots).
ax(plot,x, y_est'-' ).
ax(fill_between,x- y_est , y_err+ y_est , y_err= alpha0.2).
ax(plot,x, y'o' ,= color'tab:brown').

plt(savefig=fname"./test6_v2.png",= dpi300).
plt(show)

References:

【1】 Python matplotlib官方链接
【2】 Python matplotlib 25个可视化案例

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/868682.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-13
下一篇 2022-05-13

发表评论

登录后才能评论

评论列表(0条)

保存