python学习----实验分析k-均值初始化的影响和生成树

python学习----实验分析k-均值初始化的影响和生成树,第1张

Empirical evaluation of the impact of k-means initialization Evaluate
the ability of k-means initializations strategies to make the
algorithm convergence robust as measured by the relative standard
deviation of the inertia of the clustering (i.e. the sum of squared
distances to the nearest cluster center).

The first plot shows the best inertia reached for each combination of
the model (KMeans or MiniBatchKMeans) and the init method
(init=“random” or init=“kmeans++”) for increasing values of the n_init
parameter that controls the number of initializations.

The second plot demonstrate one single run of the MiniBatchKMeans
estimator using a init=“random” and n_init=1. This run leads to a bad
convergence (local optimum) with estimated centers stuck between
ground truth clusters.

The dataset used for evaluation is a 2D grid of isotropic Gaussian
clusters widely spaced.

# Author: Olivier Grisel 
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm

from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans

random_state = np.random.RandomState(0)

# Number of run (with randomly generated dataset) for each strategy so as
# to be able to compute an estimate of the standard deviation
n_runs = 5

# k-means models can do several random inits so as to be able to trade
# CPU time for convergence robustness
n_init_range = np.array([1, 5, 10, 15, 20])

# Datasets generation parameters
n_samples_per_center = 100
grid_size = 3
scale = 0.1
n_clusters = grid_size ** 2


def make_data(random_state, n_samples_per_center, grid_size, scale):
    random_state = check_random_state(random_state)
    centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)])
    n_clusters_true, n_features = centers.shape

    noise = random_state.normal(
        scale=scale, size=(n_samples_per_center, centers.shape[1])
    )

    X = np.concatenate([c + noise for c in centers])
    y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)])
    return shuffle(X, y, random_state=random_state)


# Part 1: Quantitative evaluation of various init methods


plt.figure()
plots = []
legends = []

cases = [
    (KMeans, "k-means++", {}),
    (KMeans, "random", {}),
    (MiniBatchKMeans, "k-means++", {"max_no_improvement": 3}),
    (MiniBatchKMeans, "random", {"max_no_improvement": 3, "init_size": 500}),
]

for factory, init, params in cases:
    print("Evaluation of %s with %s init" % (factory.__name__, init))
    inertia = np.empty((len(n_init_range), n_runs))

    for run_id in range(n_runs):
        X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
        for i, n_init in enumerate(n_init_range):
            km = factory(
                n_clusters=n_clusters,
                init=init,
                random_state=run_id,
                n_init=n_init,
                **params,
            ).fit(X)
            inertia[i, run_id] = km.inertia_
    p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1))
    plots.append(p[0])
    legends.append("%s with %s init" % (factory.__name__, init))

plt.xlabel("n_init")
plt.ylabel("inertia")
plt.legend(plots, legends)
plt.title("Mean inertia for various k-means init across %d runs" % n_runs)

# Part 2: Qualitative visual inspection of the convergence

X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
km = MiniBatchKMeans(
    n_clusters=n_clusters, init="random", n_init=1, random_state=random_state
).fit(X)

plt.figure()
for k in range(n_clusters):
    my_members = km.labels_ == k
    color = cm.nipy_spectral(float(k) / n_clusters, 1)
    plt.plot(X[my_members, 0], X[my_members, 1], "o", marker=".", c=color)
    cluster_center = km.cluster_centers_[k]
    plt.plot(
        cluster_center[0],
        cluster_center[1],
        "o",
        markerfacecolor=color,
        markeredgecolor="k",
        markersize=6,
    )
    plt.title(
        "Example cluster allocation with a single random init\nwith MiniBatchKMeans"
    )

plt.show()


Empirical evaluation of the impact of k-means initialization

from turtle import *
from random import *
from math import *


def tree(n, l):
    pd()
    pencolor('brown')
    pensize(n / 3)
    forward(l)

    if n > 0:
        b = random() * 15 + 10
        c = random() * 15 + 10
        d = l * (random() * 0.25 + 0.7)
        right(b)
        tree(n - 1, d)
        left(b + c)
        tree(n - 1, d)
        right(c)
    else:
        right(90)
        pencolor('green')
        circle(3)
        left(90)

    pu()
    backward(l)


ht()
speed(0)
tracer(0)
pu()
backward(100)
left(90)
pu()
backward(300)
tree(12, 100)
done()

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/873277.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-13
下一篇 2022-05-13

发表评论

登录后才能评论

评论列表(0条)

保存