def Memoized_Matrix_chain(p):
n = len(p)
m = [[0 for i in range(n)] for j in range(n)]
s = [[0 for i in range(n)] for j in range(n)]
for i in range(n):
for j in range(n):
m[i][j] = float('inf')
return lookup_chain(m, p, 1, n - 1, s), s
def lookup_chain(m, p, i, j, s):
if m[i][j] < float('-inf'):
return m[i][j]
if i == j:
m[i][j] = 0
else:
for k in range(i, j):
q = lookup_chain(m, p, i, k, s) + lookup_chain(m, p, k + 1, j, s) + p[i - 1] * p[k] * p[j]
if q < m[i][j]:
m[i][j] = q
s[i][j] = k
return m[i][j]
def Print_Optimal_Oarens(s, i, j):
if i == j:
print("A", i, end=" ")
else:
# print("(", end="")
print("(", end="")
Print_Optimal_Oarens(s, i, s[i][j])
Print_Optimal_Oarens(s, s[i][j] + 1, j)
print(")", end="")
p = [30, 35, 15, 5, 10, 20, 25]
n, m = Memoized_Matrix_chain(p)
Print_Optimal_Oarens(m, 1, 6)
print()
自底向上的实现方式
def Maxtrix_Chain_order(p):
'''
:param p:P list is cost of Matrix
:return: return the list of m and s m is cost of matrix
S is a copy of matrix ' cost
'''
n=len(p) # len n 不用减一 因为Python for循环 右边界
m=[[0 for i in range(n)] for j in range(n) ]
s=[[0 for i in range(n)] for j in range(n) ]
for l in range(2,n):
for i in range(1,n-l+1):
j=i+l-1
m[i][j]=123123123123
for k in range(i,j):
q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j]
if q
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)