1.Focal Loss
具体细节不在多说,这里只给出损失函数代码
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module):
def __init__(self,alpha=0.25, gamma=2.0,use_sigmoid=True):
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.use_sigmoid = use_sigmoid
if use_sigmoid:
self.sigmoid = nn.Sigmoid()
def forward(self, pred: torch.Tensor, target: torch.Tensor):
r"""
Focal loss
:param pred: shape=(B, HW)
:param label: shape=(B, HW)
"""
if self.use_sigmoid:
pred = self.sigmoid(pred)
pred = pred.view(-1)
label = target.view(-1)
pos = torch.nonzero(label > 0).squeeze(1)
pos_num = max(pos.numel(),1.0)
mask = ~(label == -1)
pred = pred[mask]
label= label[mask]
focal_weight = self.alpha *(label- pred).abs().pow(self.gamma) * (label> 0.0).float() + (1 - self.alpha) * pred.abs().pow(self.gamma) * (label<= 0.0).float()
loss = F.binary_cross_entropy(pred, label, reduction='none') * focal_weight
return loss.sum()/pos_num
2.GFocal Loss
import torch
import torch.nn as nn
import torch.nn.functional as F
class GFocalLoss(nn.Module):
def __init__(self, beta=2.0,use_sigmoid=True):
super().__init__()
self.beta = beta
self.use_sigmoid = use_sigmoid
if use_sigmoid:
self.sigmoid = nn.Sigmoid()
def forward(self, pred: torch.Tensor, target: torch.Tensor):
r"""
Focal loss
:param pred: shape=(B, HW)
:param label: shape=(B, HW)
"""
if self.use_sigmoid:
pred = self.sigmoid(pred)
pred = pred.view(-1)
label = target.view(-1)
pos = torch.nonzero(label > 0).squeeze(1)
pos_num = max(pos.numel(),1.0)
mask = ~(label == -1)
pred = pred[mask]
label= label[mask]
scale_factor = (pred - label).abs().pow(self.beta)
loss = F.binary_cross_entropy(pred, label, reduction='none') * scale_factor
return loss.sum()/pos_num
3.VFocal Loss
import torch
import torch.nn as nn
import torch.nn.functional as F
class VFocalLoss(nn.Module):
def __init__(self,alpha=0.75, gamma=2.0,use_sigmoid=True):
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.use_sigmoid = use_sigmoid
if use_sigmoid:
self.sigmoid = nn.Sigmoid()
def forward(self, pred: torch.Tensor, target: torch.Tensor):
r"""
Focal loss
:param pred: shape=(B, HW)
:param label: shape=(B, HW)
"""
if self.use_sigmoid:
pred = self.sigmoid(pred)
pred = pred.view(-1)
label = target.view(-1)
pos = torch.nonzero(label > 0).squeeze(1)
pos_num = max(pos.numel(),1.0)
mask = ~(label == -1)
pred = pred[mask]
label= label[mask]
focal_weight = label * (label > 0.0).float() + self.alpha * (pred - label).abs().pow(self.gamma) * (label <= 0.0).float()
loss = F.binary_cross_entropy(pred, label, reduction='none') * focal_weight
return loss.sum()/pos_num
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)