大数据和lT是什么关系?

大数据和lT是什么关系?,第1张

一个做传统CT培训的人,在看完《大数据时代下的历史机遇及挑战》后,突然发现,这个在13年还刚刚出道的词汇,好像可发引领未来的潮流。所以在机缘巧合之下,报了北航的大数据专业的在职研究生。学完了近两年多的课程,同时也学完了IBM在网络上的大数据课程后。首先,感觉。要搞大数据,势必要有一定的代码基础,其次,你的代码逻辑及编程习惯也是至关重要的。因为无论多大的数据,首先你要有自己对于这些数据的理解,然后再来谈应用。不能光凭拍拍脑袋就去做决定。毕竟,数据摆在那里,如何去运用,如何去使用这些数据才是最为重要的。在这里,个人比较认可的一种观念就是:最有价值的数据是掌握到运营商手中的。这也就牵出今天讨论的主题:大数据与CT,IT的关系?

看到新闻,AT&T要开始新一轮的转型。所有的网络设备要开始向SDN的方向转变。这一点,也许做传统CT的不了解,通俗的来说,也就是BAT这样公司的运维人员现在要开始兼职做网络运维的工作了。对于华为,中兴的用服工程师来说,只是会敲几行代码,传几个新版本,升级设备的日子将一去不复返了。因为自动化运维,以及大数据收集会大大减少维护人员的数量。就像有的时候,我会说在IT界的跨界竞争一样,你会C,他会JAVA,但人家黑客直接用汇编这种底层语言来写你的BUG,那你所会的在人家面前那就是不堪一击。特别是家庭终端ONU上就有体现,利用现有光猫的漏洞,扩展你的功能。

软件改变世界,网络链接世界。而下一个结合点,势必会在ICT融合上,因为运营商掌握到的数据是最有价值的。而基于这些数据的相关分析又可以辅助IT做出相应的产品,更加贴近用户的需求。通信链加速,用户内容分发,数据分析及展现,好像大数据时代下的各样新技术都层出不穷。但是否贴近用户,为用户所接受,才是一个产品发展下去的动力。

罗胖在跨年演讲时说到,这是一个造点的时代。而在大数据时代,如何造点?这一点一直是我所思考的,结合自身这些年所掌握的技术,正是接入这一块的。对于IT来说,是用户家庭的入口。而这一点,最好的结合,就是电信的CDN,还有就是迅雷快鸟这类产品。把加速的事留给运营商,收费的事留给专业的迅雷。实际上,这种结合的点,在16年还会有许多。再往下去思考,用户产生的相关数据,如何收集,如何分析,推送相关的产品这一点,相信还是要用到数据挖掘及分析。

总之,IT与CT正在逐步融合,而大数据在其中将会产生后发动力。相应的技术创新会以跨界的形式突破与改变我们原来的认知观念。对于这种变革,重要的不是你会什么,而是你是否能够在短时间内学会相应的内容。还是那一点,真正在工作中的学习是以你专注的程度及克服困难的大小来计算的,而不是你学习时间的长短。

以上由物联传媒转载,如有侵权联系删除

1、丰富的数据开发经验,对数据处理、数据建模、数据分析等有深刻认识和实战经验。

2、熟悉SQL,有一定的SQL性能优化经验。

3、熟练掌握Java语言,MapReduce编程,脚本语言Shell/Python/Perl之一。

4、业务理解力强,对数据、新技术敏感,对云计算、大数据技术充满热情。

5、深入理解Map-Reduce模型,对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验。

这五点因素并代表全部,只是为大家罗列出一些基础的技能,但这也能够给一些转行者提供一些方向。

大数据分析的产生旨在于IT管理,企业可以将实时数据流分析和历史相关数据相结合,然后大数据分析并发现它们所需的模型。反过来,帮助预测和预防未来运行中断和性能问题。进一步来讲,他们可以利用大数据了解使用模型以及地理趋势,进而加深大数据对重要用户的洞察力。他们也可以追踪和记录网络行为,大数据轻松地识别业务影响;随着对服务利用的深刻理解加快利润增长;同时跨多系统收集数据发展IT服务目录。

1、技术区别

大数据开发类的岗位对于code能力、工程能力有一定要求,这意味着需要有一定的编程能力,有一定的语言能力,然后就是解决问题的能力。

因为大数据开发会涉及到大量的开源的东西,而开源的东西坑比较多,所以需要能够快速的定位问题解决问题,如果是零基础,适合有一定的开发基础,然后对于新东西能够快速掌握。

如果是大数据分析类的职位,在业务上,需要你对业务能够快速的了解、理解、掌握,通过数据感知业务的变化,通过对数据的分析来做业务的决策。

在技术上需要有一定的数据处理能力,比如一些脚本的使用、sql数据库的查询,execl、sas、r等工具的使用等等。在工具层面上,变动的范围比较少,主要还是业务的理解能力。

2、薪资区别

作为IT类职业中的“大熊猫”,大数据工程师的收入待遇可以说达到了同类的顶级。国内IT、通讯、行业招聘中,有10%都是和大数据相关的,且比例还在上升。

在美国,大数据工程师平均每年薪酬高达175万美元。大数据开发工程师在一线城市和大数据发展城市的薪资是比较高的。

大数据分析:大数据分析同样作为高收入技术岗位,薪资也不遑多让,并且,我们可以看到,拥有3-5年技术经验的人才薪资可达到30K以上。

3、数据存储不同

传统的数据分析数据量较小,相对更加容易处理。不需要过多考虑数据的存储问题。而大数据所涉及到的数据具有海量、多样性、高速性以及易变性等特点。因此需要专门的存储工具。

4、数据挖掘的方式不同

传统的数据分析数据一般采用人工挖掘或者收集。而面对大数据人工已经无法实现最终的目标,因此需要跟多的大数据技术实现最终的数据挖掘,例如爬虫。

大数据分析一直是过去这十年的一个重要技术趋势,也是IT市场中最具活力和创新力的领域之一。但是如今的大数据分析市场与几年前截然不同,未来几年肯定也会有很大的变化。

大数据需要掌握的知识:

一、Java编程

Java语言是基础,可以编写Web应用、桌面应用、分布式系统、嵌入式系统应用等。Java语言有很多优点,它的跨平台能力赢得了很多工程师的喜爱。

二、linux基础 *** 作命令

大数据开发一般在Linux环境下进行。

大数据工程师使用的命令主要在三方面:查看进程,包括CPU、内存;排查故障,定位问题;排除系统慢的原因等。

三、hadoop

Hadoop中使用最多的是HDFS集群和MapReduce框架。

HDFS存储数据,并优化存取过程。

MapReduce方便了工程师编写应用程序。

四、HBase

HBase可以随机、实时读写大数据,更适合于非结构化数据存储,核心是分布式的、面向列的Apache HBase数据库。

HBase作为Hadoop的数据看,它的应用、架构和高级用法对大数据开发来说非常重要。

五、Hive

Hive作为Hadoop的一个数据仓库工具,方便了数据汇总和统计分析。

六、ZooKeeper

ZooKeeper是Hadoop和Hbase的重要组件,可以协调为分布式应用程序。

ZooKeeper的的功能主要有:配置维护、域名服务、分布式同步、组件服务。

七、phoenix

phoenix是一种开源的sql引擎,是用Java语言编写的。

八、Avro与Protobuf

Avro、Protobuf是适合做数据存储的数据序列化系统,有较丰富的数据结构类型,可以在多种不同的语言间进行通信。

九、Cassandra

Apache Cassandra是运行在服务器或者云基础设施上的可以为数据提供完美平台的数据库,具有高性能、可扩展性、高线性。

Cassandra支持数据中心间互相复制,低延迟、不受断**响。它的数据模型有列索引、高性能视图和内置缓存。

十、Kafka

Kafka可以通过集群来提供实时的消息的分布式发布订阅消息系统,具有很高的吞吐量,主要是利用Hadoop的并行加载来统一线上、离线的消息处理。

十一、Chukwa

Chukwa是一个分布式的数据采集监视系统,具有可伸缩性和健壮性。

Chukwa的工具包可以对结果进行显示、监测、分析,充分使用收集到的数据。

十二、Flume

Flume是海量日志处理系统,具有高可用、高可靠、分布式的特点,可以对日志进行采集、聚合和传输。

Flume可以定制数据发送方来收集数据,也可以对数据简单处理后写到数据接收方。

以上我的回答希望对你有所帮助

大数据时代八大热门IT岗位

新的想法诞生新的技术,从而造出许多新词,云计算、大数据、BYOD、社交媒体、3D打印机、物联网……在互联网时代,各种新词层出不穷,令人应接不暇。

这些新的技术、新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最新的IT技能。另一方面,云计算和大数据乃至其他助推各个行业发展的IT基础设施的新一轮部署与运维,都将带来更多的IT职位和相关技能技术的要求。

毫无疑问,这些新趋势的到来,会诞生一批新的工作岗位,比如数据挖掘专家、移动应用开发和测试、算法工程师,商业智能分析师等,同时,也会强化原有岗位的新生命力,比如网络工程师、系统架构师、咨询顾问、数据库管理与开发等等。下面分别为大家介绍着十大IT技能所体现的工作岗位:

一、算法工程师

何万青博士曾经介绍把一件事做快做好的三种方法,其中就提到过“提高流水线效率、更好的算法和更短的代码关键路径。”可以看出算法在系统效率中的重要地位。算法是让机器按照人类设想的方式去解决问题,算法很大程度上取决于问题类型和工程师对机器编程的理解,其效率的高低与算法息息相关。

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。在大数据时代,算法的功能和作用得到进一步凸显。比如针对公司搜索业务,开发搜索相关性算法、排序算法。对公司海量用户行为数据和用户意图,设计数据挖掘算法。

算法工程师,根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。另外数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。

二、商业智能分析师

算法工程师延伸出来的商业智能,尤其是在大数据领域变得更加火热。IT职业与咨询服务公司Bluewolf曾经发布报告指出,IT职位需求增长最快的是移动、数据、云服务和面向用户的技术人员,其中具体的职位则包括有商业智能分析师一项。

商业智能分析师往往需要精通数据库知识和统计分析的能力,能够使用商业智能工具,识别或监控现有的和潜在的客户。收集商业情报数据,提供行业报告,分析技术的发展趋势,确定市场未来的产品开发策略或改进现有产品的销售。

商业智能和逻辑分析技能在大数据时代显得特别重要,拥有商业知识以及强大的数据和数学分析背景的IT人才,在将来的IT职场上更能获得大型企业的青睐。不过这些技能并不是一般人都能掌握的,一些公司目前正在招聘统计学家并教授他们有关技术和商业的知识。

三、数据挖掘工程师

数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

数据挖掘专家或者说数据挖掘工程师掌握的技能,能够为其快速创造财富。当年亚马逊的首位数据挖掘工程师大卫·赛林格(David Selinger)创办的数据挖掘公司,将类似于亚马逊的产品推荐引擎系统销售给在线零售和广告销售商,而这种产品推荐引擎系统,也成为亚马逊有史以来最赚钱的工具。数据挖掘的价值由此可见一斑。

四、咨询顾问(专家)

任何业务部门和任何行业企业,都有IT系统在背后默默无闻地支撑着。在云计算大数据时代,业务面临的挑战和机遇也会给IT系统带来更多要求。在这种情况下,IT系统的规划部署和运维,都要有更为精通的专业人士才能胜任,并满足面向未来大数据分析、云计算服务应用的需要。

纽约蒙特法沃医疗中心(montefioremedical center)的副主席杰克-沃夫(JackWolf)曾经表示,他寻求不仅会建立和使用系统而且还会给予其他员工技术支持的新员工,他说:”新的系统意味着你必须有更多的咨询台来处理更多的咨询量。”当然,这里体现的主要是某个系统的技术支持的功能,但管中规豹我们不难发现,无论是部署初期的物料采购还是运维过程中的金玉良言,都凸显出这种技术咨询顾问的重要性。

五、网络工程师

网络工程师可以说是一个“绿色长青”的职业,网络技术一直以来就处于急需之中,美国人力资源公司罗勃海佛国际(Robert Half International)第三季度IT招聘指数和技能报告指出,网络管理占总需求技能排名中的第二位。对于云计算时代来说,网络在云资源池中(计算、存储、网络)更是扮演着更为重要的作用。

另一方面, IPv6 标准、物联网、移动互联等蓬勃发展,使得对于网络工程师尤其是新型网络工程师(移动、IPv6、云计算方向)的人才和技能要求也越来越多。网络工程师也因此而可以细分成多个发展方向,相应的技能要求其侧重也有所不同。比如网络安全、网络存储、架构设计、移动网络等等。

六、移动应用开发工程师

移动应用开发,会随着移动互联网时代的到来变得更受追捧。截至2012年底我国已经有10亿手机用户,移动智能终端用户超过4亿,在移动支付、移动购物、移动旅游、移动社交等方面涌现了大量的移动互联网游戏、应用和创业公司。

移动平台智能系统较多,但真正有影响力的也不外乎iOS、Android、WP、Blackberry等。大量原来PC和互联网上的信息化应用、互联网应用均已出现在手机平台上,一些前所未见的新奇应用也开始出现,并日渐增多。

移动应用开发,由于存有多个平台系统,因此不同的平台开发者其所面临的机遇和挑战也不尽相同。一个很明显的例子就是,当初由Google公司和开放手机联盟领导及开发的基于Linux的安卓系统,在开源之后就给广大开发者(商)带来巨大商机,而坚定选择iOS平台的的开发工程师,也通过苹果生态系统的不断扩建和智能设备的高市场占有,使得较早的一批开发者都赚得盆满钵满。不过在国内由于用户习惯、产业环境和版权保护的问题,移动应用开发者并没有因此而获得相应的收益。

七、软件工程设计师

近年IT业界逐渐涌现出一股软件定义网络(SDN)、软件定义数据中心、软件定义存储(SDS)和软件定义服务器(MoonShot)等浪潮,大有软件定义未来一切IT基础设施的趋势。

PaaS、SaaS、数据挖掘和分析、数据管理和监控、虚拟化、应用开发等等,都是软件工程师大展身手的好舞台。相应的,这些技术领域也对软件工程师的要求会更高,尤其是虚拟化和面向BYOD、云计算、大数据等应用的开发和管理,都需要有更高深的技术支撑。

和算法工程师有点类似的地方在于,软件工程师也需要注重设计模式的使用,一位优秀的工程师通常能识别并利用模式,而不是受制于模式。工程师不应让系统去适应某种模式,而是需要发现在系统中使用模式的时机。

八、数据库开发和管理

数据库开发和管理在大数据时代显得尤为重要,相关的数据库管理、运维和开发技术,将成为广大BI、大型企业和咨询分析机构特别看重的技能体现。代表着更多类型(尤其是非结构化类型)的海量数据的涌现,要求我们实时采集、分析、传输这些数据集,在对基础设施提出严峻挑战的同时,也特别强调了数据库开发和管理人员的挑战。

比如分布式的、面向海量数据管理的数据库系统之一NoSQL,就是面向大数据领域的非关系型数据库的流行平台,高可用、大吞吐、低延迟、数据安全性高等应用特点成为了很多企业的看重的特点,并希望有足够多的优秀IT开发人员深度开发NoSQL系统,解决对存储的扩容、宕机时长、平滑扩容、故障自动切换等问题的困恼。

以上是小编为大家分享的关于大数据时代八大热门IT岗位的相关内容,更多信息可以关注环球青藤分享更多干货

IT行业发展是很多打算学习计算机或已经投身IT事业的人士非常关注的问题,那么该行业发展趋势在2023年以后会呈现怎样的局面呢具体会有哪些表现呢对企业方而言,他们又将作出怎样的动作来一起推动IT业发展我们来看看预测的2023年亚太地区发展趋势。

以下五个方面也说明了企业的动向,霍营北大青鸟一起来看看现在学哪些技术你能够有好前景吧!

1大数据分析将走过概念验证阶段:

2023年,企业需采取相应的措施从其现有数据库中挖掘价值,并部署可扩展的基础架构,从大数据产品中获得有价值的成果。

根据近由HDS赞助、经济学人智库(EIU)开展的有关亚太地区大数据的结果表明,该地区70%以上的企业认为采用大数据将增加企业受益、提高生产力以及推动企业创新。不过,很多企业认为,由于其信息按照相互独立的业务系统、信息孤岛、格式和介质进行存储和管理,现有的信息系统阻碍了企业有效采集用于分析的数据。大数据主要面临两个方面的问题:技术和组织架构。2023年,企业需要尽快解决这两个问题。

2云服务提供商模式将越来越受欢迎:

企业的IT部门职能将从技术实施者转为业务创新者。对IT基础设施和应用服务拥有高需求的企业将开始探讨云服务提供商模式,他们更愿意与中立的第三方云服务提供商合作。

在企业内需要技术升级时,重点将是应用和商业产出,而非基础架构本身。企业将转向系统集成商、企业IT部门或第三方服务提供商来扮演云服务提供商的角色。

3企业对数据安性的关注度将达到高点:

亚太地区将引入新的个人数据安法规。企业也必须重新审视其数据安策略,寻求企业文档同步和共享、数据加密和可审核的解决方案,应对上述问题。

同时,企业要加强对移动和边沿数据安的重视程度,实施更为严格的数据安和管理方式。同时应该借助现代技术实现上述流程的管理和自动化,以降低高昂的合规成本。

4来自移动通信的非结构化数据将爆炸式增长:

亚太地区的电信运营商需要部署成熟、完善的数据管理解决方案,以应对内容交付和数据分析两方面的需求。成功部署这种解决方案的电信运营商将获得长期竞争优势。

4G的部署和价格适中的智能手机,对亚太地区移动数据的增长产生了巨大的影响。为适应消费者日益增长的数字内容服务,电信运营商必须开发一个可扩展、高性能和可靠的IT基础架构,将闪存技术和智能内容交付网络融为一体,以满足用户对高带宽的需求。

以上就是关于大数据与CT,IT的关系全部的内容,包括:大数据与CT,IT的关系、IT技术人员转行大数据应该考虑哪些问题、大数据和lT是什么关系等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/8776189.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-21
下一篇 2023-04-21

发表评论

登录后才能评论

评论列表(0条)

保存