摘要:数学,建模,教学,主导
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
数学建模
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模应用
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
编辑本段数学建模的意义
数学建模
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际 *** 作的一种理论替代。
应用数学模型
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。
编辑本段过程
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。
编辑本段起源
进入西方国家大学
数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。 大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。
在中国
1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校的314队参加。教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。十几年来这项竞赛的规模以平均年增长25%以上的速度发展。 2009 年全国有33个省/市/自治区(包括香港和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)!
编辑本段大学生数学建模竞赛
全国大学生数学建模竞赛
全国大学生数学建模竞赛是国家教育部高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解,计算方法的设计和计算机实现,结果的分析和检验,模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行;竞赛一般在每年9月末的三天内举行;大学生以队为单位参赛,每队3人,专业不限。
全国大学生数学建模竞赛章程(2008年)
第一条 总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。 第二条 竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 第三条 竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。 2.竞赛每年举办一次,一般在某个周末前后的三天内举行。 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理。 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,但不得与队外任何人(包括在网上)讨论。 5.竞赛开始后,赛题将公布在指定的网址供参赛队下载,参赛队在规定时间内完成答卷,并准时交卷。 6.参赛院校应责成有关职能部门负责竞赛的组织和纪律监督工作,保证本校竞赛的规范性和公正性。 第四条 组织形式 1.竞赛由全国大学生数学建模竞赛组织委员会(以下简称全国组委会)主持,负责每年发动报名、拟定赛题、组织全国优秀答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。 2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区应至少有6所院校的20个队参加。邻近的省可以合并成立一个赛区。每个赛区建立组织委员会(以下简称赛区组委会),负责本赛区的宣传发动及报名、监督竞赛纪律和组织评阅答卷等工作。未成立赛区的各省院校的参赛队可直接向全国组委会报名参赛。 3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,以参赛校数和队数、征题的数量和质量、无违纪现象、评阅工作的质量、结合本赛区具体情况创造性地开展工作以及与全国组委会的配合等为主要标准。
数学建模的应用,对于数学建模竞赛来说是非常大的促进和动力。 目前,国内首家数学建模公司-北京诺亚数学建模科技有限公司在北京成立。已读博士的魏永生和另外两个志同道合的同学一起合作的创业项目,源于他们熟悉的数学建模领域。 魏永生三人在2003年4月组建了一个大学生数学建模竞赛团队,当年就获得了国家二等奖,2005年荣获了国际数学建模竞赛的一等奖,同年10月注册了数学建模爱好者网站,本着数学建模走向社会,走向应用的方向,他们在去年6月正式确立了以数学建模应用为创业方向,组建了创业团队,开启了创业之路。本月初,北京诺亚数学建模科技有限公司正式注册,魏永生团队的创业正式走向正轨。 目前,诺亚数学建模正以其专业化的视角不断拓展业务壮大实力,并积极涉足铁路交通、公路交通、物流管理等其他相关领域的数学建模及数学模型解决方案 、咨询服务。 魏永生向记者解释说,也许很多人并不了解数学建模究竟有什么用途,他举了个例子,一个火车站,要计算隔多久发一辆车才能既保证把旅客都带走,又能最大程度的节约成本,这些通过数学建模都能算出最优方案。 魏永生介绍说,他们的数学建模团队已有6年的历史,彼此配合很默契,也做了数十个大大小小的项目。他们的创业理念是为直接和潜在客户提供一种前所未有的数学建模优化及数学模型解决方案,真正为客户实现投资收益的最大化、生产成本费用的最小化。
数学建模应当掌握的十类算法
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关,数学建模是培养学生运用数学工具解决实际问题的最好表现。下文是我为大家搜集整理的关于2017年全国大学生数学建模竞赛优秀论文的内容,欢迎大家阅读参考!
2017年全国大学生数学建模竞赛优秀论文篇1
浅析数学建模课程改革及其 教学 方法
论文关键词:数学课程;数学建模;课程设置;课程改革
论文摘要:数学建模教学和竞赛的开展,是培养学生创新能力的重要途径。对数学建模竞赛中出现的问题进行分析,找出问题产生的根源与必修课和专业课设置不合理有关,应对高校数学课程的设置、教学方式等进行改革,并提出具体改革建议。
1 前言
数学建模,从宏观上讲是人们借助数学改造自然、征服自然的过程,从微观上讲是把数学作为一种工具并应用它解决实际问题的教学活动方式。数学建模 教育 本身是一种素质教育,数学建模的教学与竞赛是实施素质教育的有效途径,它既增强了学生的数学应用意识,又提高了学生运用数学知识和计算机技术分析和解决问题的能力。因而加强数学建模教育,培养学生的数学应用意识与能力已成为我国高校数学建模课程改革的重要目标之一。虽然目前我国许多高校在数学建模方面取得了一些成绩,但大学生们在竞赛中也暴露出了许多问题,引发出对传统的课程设置和教学方法的思考。
2 数学建模的现状和所存在问题与原因分析
21 建模竞赛的现状
根据竞赛时间(九月中下旬),我国大部分高校每年一般在七月中旬便开始组织学生的报名培训工作。培训内容分为两个部分:首先集中讲解一些基础知识,主要包括常微分方程、概率与数理统计、运筹学、数学实验、建模基础等课程;然后进行建模的模拟训练,以往届国内外普通组和大专组的部分竞赛题为选题,让学生自愿结组,在规定时间内完成,并自愿为同学讲解各自的解题思路和方法。
参赛学生首先要参加培训,他们一般是先关注校园网上的通知,再到各院系自愿报名而组成,经培训后选拔出参赛队员。事实上,一般参赛的学生并没有选拔的过程,基本上是学生在培训阶段就自动减员,所剩人数就是参赛人数。几年来,参加培训、竞赛的学生构成基本类似。报名学生数量不多,而且他们大多是来看看是怎么回事,听了一、两次课就不见踪影或自动退出。
数学建模课程的教学内容是以问题为中心,块状编排;开设数学建模课程的时间较短,缺乏应有的教学 经验 来借鉴,大多数教师都是采用模型的机械讲解。至于问题的形成背景,建模过程中可能用到的多种数学思想和方法很少顾及,更谈不上让学生在课堂进行讨论、交流与合作,使得学生难以掌握数学建模的思想和方法。
22 所存在的问题及原因分析
由以上可以看出,我国大部分高校在建模的工作中存在着一定的问题。第一,没有把数学建模工作纳入日常的教学工作中,临时抱佛脚,突击应对,学生对数学建模兴趣不浓,积极性不高。第二,参加培训竞赛的学生专业比较单一,数学建模活动没有全面展开,这虽然与宣传的力度有关,更主要是缺少必要的教学环节。第三,高年级学生参赛的较少,获奖的比例却较大。特别是大四年级的学生,由于他们面临 毕业 ,就业压力、 考研 压力很大,尽管他们有较深厚的数学基础,却无心顾及竞赛;低年级学生参加培训竞赛的人数较多,积极性很高,但却不出成绩。这表明数学建模与知识的掌握、积累密切相关,是理论与实际应用相结合、知识整合与释放相结合的过程,低年级课程设置不合理,一些相关课程开设太晚。第四,不少人认为应该把课程的重点放在具有复杂背景的实际问题的解决上,持这种观点的人主要是忽视了数学教育专业的特点和培养目标。我们认为,数学教育专业数学建模课程重点应放在树立信念、培养意识和能力上。
另外,数学建模课程开设及教材使用也存在诸多不足之处。据了解,绝大部分高校数学教育专业教学建模课程照搬理工类专业数学建模教材,这些教材主要存在以下问题:第一,教材主要涵盖大量难度较大的现成的数学模型,而这些模型应用了大量的非数学领域的知识和方法,要理解这些问题,对于数学教育专业的学生来说缺乏应有的基础,学习起来只能依靠模仿和机械记忆;第二,教材主要是采用以问题为主线的块状编排体系,重点是问题的罗列,过分突出问题解决。照搬这类教材给数学教育专业数学建模教学带来了较大的负面影响,学生接受难,教师驾驭难。更重要的是难以落实数学教育专业数学建模课程应使学生树立“数学具有广泛应用性”的信念,培养学生数学应用的意识和能力,使学生掌握一套数学建模方法等目标,难以适应高等学校数学教育改革的需要。
综上所述,我们认为,解决数学教育专业开设数学建模课程工作中所出现的问题是课程建设与改革的重中之重,建构符合数学教育专业实际和特色的教材以及形成一套与数学教育专业特点相适应的、科学的教学方法是当务之急。
3 以数学建模活动为载体开展数学建模教学的途径与方法
目前,开展数学建模教学的途径与方法很多,其中比较常用且很奏效的途径和方法就是以数学建模活动为载体开展数学建模教学,其途径和方法可以描述如下:
31 精心设计教学案例,开展案例教学法
所谓案例教学法就是在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模示例,介绍建模的思想方法。课堂上的活动一部分是老师讲授,另一部分是让学生进行课堂讨论,即由学生发言,提出对问题的理解和所建立的数学模型的认识,并提出新的数学模型,对其求解、分析、讨论,进行比较检验。实施案例教学要把握好以下环节:
(1)教学案例的选取。要使案例教学达到最佳效果,最重要的就是选好教学案例。选取案例时应该遵循以下的原则:①代表性。案例避免涉及过多的专业知识,又要考虑到科学的发展,学科之间的联系,同时可以拓宽学生的知识面。②原始性。来自广播电视、报刊的信息,政府机关、企事业单位的 报告 、计划、统计资料等等,都是数学建模问题原始资料的重要来源;也可以引导学生亲自到一线调查研究,注意积累课题资料。③趣味性。在具体选取案例时,应该选择既有趣味性又能充分体现数学建模思想的案例,如人口问题、七桥问题、人狼羊过河问题、三级火箭发射卫星问题、森林灭火问题等等。从培养兴趣入手,让学生逐步体会到建模的思想方法和建模的重要性。④创新性。编制建模例题时,必须考虑培养学生的创新精神和创造能力。为此,应注重一题多模或多题一模、统计图表等例题的编拟,密切关注现代科学技术的发展,使学生创新和高新技术密切结合,融入当代科学发展的主流。
(2)案例的课堂教学。教师在讲授具体的建模案例时,应注重两个方面。第一个方面要从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,如何通过合理的假设和简化分析建立优化的数学模型。还要强调如何用求解结果去解释实际现象,检验模型。这种方法既突出了教学的重点,又给学生留下了进一步思考的空间。例如讲授传染病模型时,不同的假设会导致建立不同的模型,只有从实际出发,不断地修正才能使之成为一个成功的模型。除此,还可以给学生提供一些改进的方向,让学生自己课外独立探索和钻研。另外一个方面是教师的讲授必须和学生的讨论相结合。在教师先讲清楚案例的背景、关键的因素、所运用的数学工具等情况下,运用怎样的数学知识和数学思想、建立怎样的数学模型可以让学生各抒己见,进行讨论式教学。这样一方面可以避免教师的“满堂灌”,另一方面可以活跃课堂气氛,提高学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的。
32 把好课后建模实践训练关,巩固和深化课堂教学
为了巩固和深化课堂教学的内容,使学生进一步地提高建模能力,建模实践训练也是数学建模教学的重要环节。主要有以下的形式:一是布置课后训练题。第一种类型的训练题可以是用课堂上讲过的数学建模方法建模或者是对课上某个问题做进一步的讨论,这是为了达到巩固课堂教学的目的。
另一种类型是为了达到深化课堂教学的目的,在学完有关数学知识单元后,布置该单元知识的训练题,在特定的时间内,让学生在数学建模实验室进行建模强化训练。对每次的训练题要完整地完成,从提出问题、分析问题、建立模型、求解模型到模型的分析、检验、推广的全过程,并在规定时间内完成一篇思路清晰、条理有序的数学论文。通过此过程的强化训练,使学生的认模、建模、用模的能力得到充分地锻炼和提高。每次训练题做完后第一个环节就是教师对训练论文认真批阅审定,对论文中出现的问题及时提出指正意见;第二个环节是组织全班成员对训练论文进行专题讨论,让同学们讲述论文构思、建模思想与方法。通过整体交流,让大家互 相学 习、取长补短,达到共同提高的目的。二是系统讲授数学软件,并让学生上机实习。随着计算机技术的发展,一些高性能的、应用性强的数学软件应运而生,如Matlab、Mathematica、Mapple、SAS、Lindo、Lingo等。有了这些数学软件的出现,教材中复杂的数据计算和处理不再是难题。教师在系统讲授这些数学软件的具体使用技能后,让学生亲自上机 *** 作,掌握这些软件在实际数学运算的应用。例如,如何利用软件进行求导、求积分、求极限等运算;如何利用软件解方程、方程组,解线性规划;如何利用数学软件研究函数变化规律,画出曲线、曲面的图形等等。
33 不断提高数学教师自身的水平来促进数学建模教学
在数学建模教学中,教师是关键。教师水平的高低直接决定着数学建模教学能否达到预期的培养学生能力的目的。讲授数学建模教学的教师不仅要求具备较高的专业水平,还必须具备丰富的实践经验和很强的解决实际问题的能力。因此,为了提高教师的水平,一方面可以多派教师走出去进行专业培训学习和学术交流,比如多参加各种学术会议、到名校去做访问学者等等。另一方面可以多请着名的专家教授走进来做建模学术报告,使师生增长知识,拓宽视野,了解科学发展前沿的新趋势、新动态。另外,数学教师还必须更新教育理念,不断积累和更新专业知识,其中包括较宽广的人文和科学素养。数学教师只有不断创新,努力提高自身素质,才能适应新的形势,符合时代发展的要求。
总之,数学建模内容具有实用价值,数学建模课程授课可以生动有趣,数学建模可能有知识创新的产品和成果。特别是促进相关数学课程的教学,应该在学生学习了相关课程后或者学习相关课程中开设数学建模,至少应该在现有教学内容中安排一定的数学实验。
参考文献:
[1]李大潜中国大学生数学建模竞赛[M]北京:高等教育出版社,1998
[2]安淑华中国数学教育改革的几点思考[J]数学教育学报,2004
[3]黄泰安数学教师的数学观和数学教育观[J]数学教育学报,2004
[4]王茂之数学建模培训课程体系设计探讨[J]数学教育学报,2005
2017年全国大学生数学建模竞赛优秀论文篇2论数学建模思想教学
1在线性代数教学中融入数学建模思想的意义
11激发学生的学习兴趣,培养学生的创新能力
教育的本质是让学生在掌握知识的同时可以学以致用。但是目前的线性代数教学重理论轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不仅可以激发学生学习线性代数的兴趣,而且可以调动学生使用线性代数的知识解决实际问题的积极性,使学生认识到线性代数的真正价值,从而改变线性代数无用的观念,同时还可以培养学生的创新能力。
12提高线性代数课程的吸引力,增加学生的受益面
数学建模是培养学生运用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这可以大大改善线性代数课堂乏味沉闷的现状,从而提高线性代数课程的吸引力。由数学建模的教学现状可以看到学生的受益面很小,然而任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。
13促进线性代数任课教师的自我提升
要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不仅要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的能力,这就迫使线性代数任课教师要不断学习新知识和新技术,促进自身知识的不断更新,进而达到提高教学和科研能力的效果。
2在线性代数教学中融入数学建模
思想的途径虽然线性代数课程本身的内容多,课时不够,但我们将数学建模的思想融入线性代数课程中,并不是用“数学建模”课的内容抢占线性代数课程的课时,在此,笔者仅从下面2个方面着手将建模的思想逐步渗透到线性代数的教学中。
21在线性代数的概念中融入数学建模的思想
从广义上说,线性代数教材中的行列式、矩阵、矩阵乘法、向量、线性方程组等复杂抽象的概念都来源于实际。因此在讲授这些概念时可以恰当选取一些生动的实例来吸引学生的注意力,同时将概念模型自然地建立起来,使学生充分感受到实际问题向数学的转化。例如矩阵是线性代数中的一个重要概念,在引入矩阵的概念时,可以从一个简单的投入产出问题出发,将这个问题中的数据用矩形表来表示,这种简化思想即是建模抽象化思想的很好体现,而这样的矩形表就称为矩阵。
22在线性代数的课外作业中融入数学建模的思想
课外作业是对课堂教学内容的消化和巩固,然而目前线性代数的教材以及相关参考书中的习题都没有涉及到线性代数中定义、定理在实际中的应用问题,为了弥补这一点,我们可以在习题中补充一些线性代数建模问题,具体的做法如下。1)在学完1~2个单元后,针对所学的内容开展1次大型作业,学生可以3人一组通过合作的方式来完成该作业(即完成1篇小论文)。学生在完成作业的过程中,不仅可以加强和巩固线性代数的课堂教学内容,还可以提高自学能力和论文写作能力以及培养他们的团队合作精神。同时通过完成大型作业可以使学生尽早地接触科研方法,这与目前鼓励大学生进行科研创新的宗旨是一致的。2)在所有学生的大型作业完成之后,可以组织学生讲解完成作业的思路以及遇到的问题,而教师则针对不同的 文章 做出相应的点评并指出改进的方向。这种学生讲教师听的换位教学模式不仅可以督促学生更好地完成作业,还可以提高学生的语言表达能力以及促进师生的关系,从而大大提高了教学效果。
3在线性代数教学中融入数学建模
思想的案例案例1:投入产出问题[4]。某地有一座煤矿,一个发电厂和一条铁路。经成本核算,每生产价值1元钱的煤需消耗03元的电;为了把这1元钱的煤运出去需花费02元的运费;每生产1元的电需06元的煤作燃料;为了运行电厂的辅助设备需消耗01元的电,还需要花费01元的运费;作为铁路局,每提供1元运费的运输需消耗05元的煤,辅助设备要消耗01元的电。现该煤矿接到外地6万元煤的订货,电厂有10万元电的外地需求,问:煤矿和电厂各生产多少才能满足需求模型假设:假设不考虑价格变动等其他因素。
4结束语
在线性代数教学中融入数学建模思想,培养学生的建模能力,是符合当代人才培养要求的,是可行的。同时也要认识到数学类主干课程的原有体系是经过多年历史积累和考验的产物,若没有充分的根据不宜轻易彻底变动[6]。因此数学建模思想的融入要采用渐进的方式,尽量与已有的教学内容进行有机的结合。实践证明,通过在线性代数教学中融入数学建模思想,不仅激发了学生的学习兴趣,培养了学生的创新能力,还可以促进教师进行自我提升。但如何在线性代数教学中很好地融入数学建模思想目前还处于探索阶段,仍需要广大数学教师的共同努力。
>>>下一页更多精彩的“2017年全国大学生数学建模竞赛优秀论文”
数学建模论文一般包括哪几部分分析如下:
1、模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
2、模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
3、模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
4、模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。模型分析:对所得的结果进行数学上的分析。
5、模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。模型应用:应用方式因问题的性质和建模的目的而异。
扩展资料:
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。
乒乓球新旧赛制对比分析
关键字:11分制 21分制
题目描述:
自2001年10月1日起,国际乒联改用11分制等新规则。11分制的实行,使比赛偶然性增加,让一些二三流选手也有机会战胜一流选手。“但这个偶然性应有个度,”王家声说:“如果这个偶然性大到世界顶尖高手也纷纷被无名小卒淘汰,三四流选进决赛,那它就不是好规则了。”,是否会象羽毛球7分制一样实行不久就取消呢?
请就乒乓球新旧赛制对比分析,试对11分制的5盘3胜与21分制的3盘2胜制作定量的比较分析;试对11分制的7盘5胜和21分制的5盘3胜制作定量的比较分析;请就是否有利于运动的推广;是否有利于形成对抗激烈,场面精彩的比赛;是否有利于它的市场开发和赞助商利益方面来评价乒乓球11分制利弊如何,并作出建议。
参量和函数说明:
I 中的如下:
A:选手一 B:选手二
WA:A胜的球数 WB: B胜的球数
g: A每球的胜率,即赢得一球的概率
P1: 11分制下,A胜出一局,且WA=11,WB<10时,的概率
P2:11分制下,A胜出一局,且 WB>=10,WA=WB+2时,的概率
P3:11分制下,A胜出一局的总概率
P4:11分制下,5盘3胜,A胜出的总概率
P5:11分制下,7盘4胜,A胜出的总概率
p3: 21分制下,A胜出一局的总概率
p4: 21分制下,3盘2胜,A胜出的概率
p5: 21分制下,5盘3胜,A胜出的概率
II 中的如下:
A:选手一 B:选手二
i:A的得分,赢球数 j:B的得分,赢球数 n:总球数
g(i,j): A在比分i:j下胜出一球的概率,是随赛程而变化的函数
g0:A刚开始时的胜率
m(x):来表A进入状态的快慢程度对g造成影响的调谐因子
α:关键球(决胜负的一球)对A方对输赢此球的影响的因子
w(i,j):用来描述A方输赢在比分i:j下,赢得此球的因子函数,当状态i:j时为可决定胜负(关键球)时w(i,j)=α,否则w(i,j)=1(也就是对比赛无影响)
L(x):A输球数(输球数为负时,即赢球)对g的影响的因子函数,其中x=i-j
C:用来来标记A是否最先发球,若是则C=0,否则C=1
F(x):发球权对A的胜率g的影响的因子函数,其中在11分制下x= mod(2) ,21分制下x= mod(2) 。
G(i,j):到达比分i:j时的概率
L1:表示A胜的折线 L2:表示B胜的折线
P1:在11分制下,A胜出一局的概率 P’1:在21分制下,A胜出一局的概率
解答过程:
I,初步建模
我们不妨先建立一个两选手对战的模型,且作出以下规定:1,根据两选手的技术水平,给定他们每一球胜出的概率;2,假设这种概率是恒定不变的,也就是说不考虑其它因素的影响。
现有两选手A和B对战,我们现在只拿出一个选手出来作考虑,比如A,因为比赛双方是相对的,确定了A的胜率,B胜率也随之确定(等于1减去A的胜率)。记A赢球为标志1,输球为标志为0,则概率空间X={0,1}。假设比赛共打了n球,则由前面的假设易知,存在服从0-1分布的n个相互独立的随机变数x1,x2,x3,…,xn ,其中xi∈X,i=1,2,,n。
设A每球的胜率为g(相应地B的胜率为1-g),对战n盘,有Y=X1+X2+…+Xn ,服从两项分布ψ(n,g)
一、现在我们先来讨论11分制下A选手胜出的总的概率。
由于在每一局中,只有当A先胜出B至少两球,且打足11球时,A方可赢得这一局。
这样说来,我们可分两种情况来讨论,一是A先胜出11球,且B胜出的不足10球,则A就可胜出了。二是,B超过或等于10球,这时当且仅当A领先出两球时,A才可赢得本局。
记A胜的球数为WA,B的为WB。对第一种情况,WA=11,WB<10;现在来算A胜出此局的概率,并记为P1,由于最后一球必为A胜的,故在对战盘数n=WB+10下来讨论
Yn=X1+X2+…+Xn
P(Y=10)= g10(1-g)WB 其中WB=0,1,2,9
由上式知,A可在WB=i,其中i=0,1,2,…,9的情况下胜出,由于事件之间是互斥的,所以概率可叠加,因此可得P1 :
P1= gP(Y10+i=10)= g11(1-g)i
对于第二种情况下,亦即WB>=10,WA=WB+2,记A胜出此局的概率为P2,则前20球必为AB各胜10球(否则就是第一种情况了),总球数n=WA+WB=2WB+2,即n=22,24,…,2k+2,…
A要胜出此局,则最后两球必为A赢的,对于每一n=2k+2,k>=10,我们考虑从第21球开始
的r=n-22球(包括第21球),A,B在这期间的胜负可以说是交替的,即可以把相邻两球作为一个整体,把这段期间作分割,如下:
(第21球,第22球 ),(第23球,第24球)……………(第n-4球,第n-3球)
在每个分割中,A,B各胜一球
A在不同球数下胜出的事件均是互斥的。故有
P2= g10(1-g)10 其中k=10,11,12,…
=
记F(k)= =2-11g (1-g)-1
由于g是概率,故0≤g≤1,那么1-g≥0,所以有0≤2g(1-g)≤ =
故 = ,记L=2g(1-g), t=2-11g (1-g)-1/(1-L)
则F(k)= t Lk ≤t(1/2)k
由此可知,P2为收敛级数,并且有P2=tL11=
现在,我们来看一下,A胜出此局的概率是多少?我们记之为P3。由于,A在不同球数胜出的事件是相互独立的,互斥的,所以有
P3=P1+P2
=
a,对于5盘3胜
用P4来记A胜的概率,则比赛的盘数n可为3,4,5
n=3时,概率为: (P3)3
n=4时,最后一盘必为A胜,故概率为:P3 (P3)2(1-P3)
n=5时,最后一盘也必为A胜,故概率为:P3 (P3)2(1-P3)2
于是有P4=(P3)3+ P3 (P3)2(1-P3)+ P3 (P3)2(1-P3)2=10(P3)3 – 15(P3)4+6(P3)5
b,对于7盘4胜
用P5来记A用的概率,则比赛的盘数n可为4,5,6,7
n=4时,概率为: (P3)4
n=5时,最后一盘必为A胜,故概率为:P3 (P3)3(1-P3)
n=6时,最后一盘也必为A胜,故概率为:P3 (P3)3(1-P3)2
n=7时,最后一盘也必为A胜,故概率为:P3 (P3)3(1-P3)3
于是有P5=(p3)4[-20(P3)3+70(P3)4-84P3+35]或P5=(p3)4[1+4(1-p3)+10(1-p3)2+20(1-p3)3]
二、现在来讨论21分制下A选手胜出的总的概率。
有了11分制的的讨论,21分制下将易得出如下结果,(其论证过程类似于11分制的论证程)
对应于11分制下的P3,我们有p3=
=
a,对于3盘2胜下A胜出的概率,对应于11分制下的P4,我们记之为p4,则有
p4=3(p3)2-2(p3)3
b,对于5盘3胜下A胜出的概率,对应于11分制下的P5,我们记之为p5,则有
p5=(p3)3[6(p3)2-15p3+10]
下面我们用Mathimatica来分别作出P4和p4,P5和p5的图象比较如下:
并以步长为0025,计算出g从0到1,P4和p4,P5和p5的比较数据如下:
num g P4 p4 P5 p5
1 0000 0000 0000 0000 0000
2 0025 0000 0000 0000 0000
3 0050 0000 0000 0000 0000
4 0075 0000 0000 0000 0000
5 0100 0000 0000 0000 0000
6 0125 0000 0000 0000 0000
7 0150 0000 0000 0000 0000
8 0175 0000 0000 0000 0000
9 0200 0000 0000 0000 0000
10 0225 0000 0000 0000 0000
11 0250 0000 0000 0000 0000
12 0275 0000 0000 0000 0000
13 0300 0000 0000 0000 0000
14 0325 0001 0000 0000 0000
15 0350 0003 0001 0001 0000
16 0375 0011 0006 0004 0001
17 0400 0034 0024 0016 0007
18 0425 0085 0068 0055 0032
19 0450 0181 0161 0144 0108
20 0475 0324 0310 0298 0268
21 0500 0500 0500 0500 0500
22 0525 0676 0690 0702 0732
23 0550 0819 0839 0856 0892
24 0575 0915 0932 0945 0968
25 0600 0966 0976 0984 0993
26 0625 0989 0994 0996 0999
27 0650 0997 0999 0999 1000
28 0675 0999 1000 1000 1000
29 0700 1000 1000 1000 1000
30 0725 1000 1000 1000 1000
31 0750 1000 1000 1000 1000
32 0775 1000 1000 1000 1000
33 0800 1000 1000 1000 1000
34 0825 1000 1000 1000 1000
35 0850 1000 1000 1000 1000
36 0875 1000 1000 1000 1000
37 0900 1000 1000 1000 1000
38 0925 1000 1000 1000 1000
39 0950 1000 1000 1000 1000
40 0975 1000 1000 1000 1000
41 1000 1000 1000 1000 1000
程序清单如下:
#include<stdioh>
#include<stdlibh>
#include<mathh>
double c(int i,int n){//返回组合数
if(i>n/2) i=n-i;
double s=1;
int k,j;
for(k=n,j=1;j<i+1;j++,k--)
s=sk/j;
return s;
}
int main()
{
freopen("cmpout","w",stdout);
int i=0,k=1;
double g,s,temp,p4=1,p5,pp4,pp5;//p4 为P4,pp4为p4,p5为P5,pp5为p5
s=0;temp=1;
printf("num g P4\t p4\t P5\t p5\n");
for(g=000;g<=1;g+=0025){
s=0;temp=1;
for(i=0;i<10;i++){
s+=c(10,i+10)temppow(g,11);
temp=1-g;
}
s=s+c(10,20)pow(g(1-g),10)gg/(1-2g(1-g));//s为P3
p4=pow(s,3);
p5=p4s;
p4=p4(1+3(1-s)+6(1-s)(1-s));
p5=p5(1+4(1-s)+10(1-s)(1-s)+20(1-s)(1-s)(1-s));
s=0;temp=1;
for(i=0;i<20;i++){
s+=c(20,i+20)temp;
temp=1-g;
}
s=pow(g,21);
s=s+c(20,40)pow(g(1-g),20)gg/(1-2g(1-g));//s为p3
pp4=ss(3-2s);
pp5=sss(1+3(1-s)+6(1-s)(1-s));
printf("%3d %3lf %3lf\t%3lf\t%3lf\t%3lf\n",k++,g,p4,pp4,p5,pp5);
}
fclose(stdout);
return 0;
}
现在对图象与数据进行分析:
数据与图象是吻合的,图象是直观的,数据只是对图象的一个辅肋理解和有力佐证(因为细微的差别在图象上是较难发现的)。
现在我们来简单验证一下图象与数据的模拟效果如何。无论是在数据上还是图象上,一个很明显的特点就是赢的概率是g的增函数。容易看出,当选手的胜率g为05时,无论在哪一种情况下,他赢得本场比赛的概率均为05,相应地当g趋向0时,赢的概率也趋于0,g趋于1时,赢的概率也趋于1;这个与事实是相符合的,事实上当两人势均力敌时,当然哪一方赢的概率均为05;当某一方胜率g=0(或g=1)时,说明两个级别相差悬殊的选手在比赛,很明显,当然是优势的一方胜出的了,亦即无论是11分制还是21分制, “世界顶尖高手也纷纷被无名小卒淘汰,三四流选进决赛”的“偶然性”(概率),是趋近于零的。那么一流选手与二,三流之间的关系如何呢?
从图象和数据中,一流选手对阵二三流时,就是当胜率略大于05时的情形了,可以看出,在11分制下时,一流选手落败的“偶然性”比在21分制下落败的要大一点(数据上很明显了,图象上是21分制的概率曲线是在11分制的概率曲线之上的,说明在相同的胜率g下,21分制下该选手胜出比赛的概率要大)。这个也实际情况也是相符合的, “11分制的实行,使比赛增加偶然性增加,让一些二三流选手也有机会战胜一流选手”。这是因为11分制所用的赛程比21分制下的要短,所以优势一方相对不利。以上论述充分证明了拟合效果是可以接受的,模型是正确的。
也许,你会认为上述两个图象的概率曲线都较接近,差别不太明显,这是因为多盘比赛平均下来使得正负减弱,图象均衡,不妨来看一下单局时的情况,如下图所示,下图是一个仅表示一局的11分制和21分制下输赢概率的比较,亦即P3与p3的比较,差别比较明显。
本模型也证明了,11分制是可以接受的。因为它使比赛的“偶然性”增加,使比赛更加惊险,优势选手也稍弱的选手之间的竞技更具悬念,也就是说“有利于形成对抗激烈,场面精彩的比赛”;使比赛更吸引人,赛程的缩短也不会使观众因长时间观看而感到乏味,于是更多的观众会观看这些相对更惊险的比赛。同时比赛偶然性的增加,也使的更多弱势选手,乒乓球爱好者跃跃欲试,更勇敢地加入到比赛的行列中去,“运动就是这样推广开去的”。观众的增加,和对此项运动的热爱增加,将更有利于乒乓球市场的开发,赞助商的投入也回得到更大的回报,其产品,企业知明度将有所上升,更有利于他的利益。
II、综合模型
显然影响比赛结果的不会单单只有技术因素的,技术因素是最关键的因素,但是想要得到更好的模拟效果,我们还必需考虑更多,更全面才行!
现在,我们来分析一下影响选手们比赛结果的因素。
1, 技术因素,这个是关键,在I 中我们已详细讨论过了。
2, 心理因素,在这方面,我们可考虑选手们在处理比分问题时的能力,受比分影响的因素和处理关键球(决胜负的一球)时的能力问题,也就是选手受关键球影响的因素。
3, 进入状态的时间长短,有些选手很快进入状态,但有些却是慢热型的,11分制下与21分制下由于赛程的长短不一致,所以选手的慢热与否会影响比赛的结果
4, 发球权,有些选手在发球方面很讲技术,随着11分制由21分制的5球一换变成2球一换,这必然会对选手造成影响的。
5, 体力问题,由于选手们均是长期接受严格的训练,长期参赛的,所以,一般来说,双方的体力消耗都是同等下降的,故可看作等同的,所以可以忽略不作考虑。
根据上述因素,我们在I的基础上建立一个更加复杂,综合的模型。
仍旧拿A和B作考虑,A的胜率也还是记为g ,(由于B的也相应决定,为1-g,所以就不另作讨论了)。但是现在的g是要考虑到受其它因素影响的,是变动的,而不象I中单单受技术因素决定、恒定的。现在就来讨论一下g应如何表示吧。
g主要由技术因素决定,但是会随赛程的进展而变动。首先g还会受到比分影响。我们可定义g=g(i,j),其中记A与B的得分分别为i和j,也就是说此时A、B的比分为i:j。令g0为A开始时的胜率(注意这个是赢球的概率,而不完全是技术水平反映,因为刚开始时,选手可能还没有进入状态)。现考虑选手进入状态的快慢对g的影响,记函数m(x),其中x=i+j,用m(x)来表A进入状态的快慢程度对g造成影响的调谐因子,于是有g(i,j)=g0m(i+j)。显然当A比B快进入状态时0≤m(x)≤1,单调上升,因为随着比赛的进行,B越来越进入状态了,g慢慢减少。反之,若慢,则1≤m(x),单调下降,因为随着赛事的进行,A越来越进入状态了,g慢慢增大,g增大的速度就会减慢。但无论m(x)是增还是降,最后均会趋于一定值,记为m0。不妨设当x=K时,m(x)=m0 。我们可记当选手进入稳定状态时g=g(i,j)m0 。
现在来考虑关键球对g的影响,前面已说过关键球其实就是决胜负的一球,我们把这一球对A、B方对输赢此球的影响用因子α表示。我们不妨用一函数w(i,j)来描述这种情况,当状态i:j时为可决定胜负时w(i,j)=α,否则w(i,j)=1(也就是对比赛无影响)。所以,现在可记g(i,j)=g0m(i+j)w(i,j)。
现在来考虑A输球数(输球数为负时,即赢球)对g的影响,现定义一函数L(x),其中x=i-j。显然当x>0时L(x)≥1,x=0时L(x)=1,x<0时,L(x)≤1。所以现在可记g(i,j)=g0m(i+j)w(i,j)L(i-j)。
最后,我们来考虑发球权对A的胜率g的影响,设当A获得发球权时,影响用β1表示,无发球权时,用β2表求。因为11分制下是2球一换的,所以我们用C来标记是否A最先发球,若是则C=0,否则C=1。那么A发球的充要条件是 mod(2)等于0,否则等于1。同理,在21分制下,若A发球的充要条件是 mod(2)等于0,否则等于1,这里C与上相同。所以可定义一函数F(x),当x=0时,F(x)= β1 ,当x=1时,F(x)= β2 。这里,在11分制下x= mod(2) ,21分制下x= mod(2) 。
所以,现在可记g(i,j)=g0m(i+j)w(i,j)L(i-j)F(x),其中x的定义如上。
好了,分析到此为止,g的表示式最终确定了下来了:
g(i,j)=g0m(i+j)w(i,j)L(i-j)F(x) ,各函数和参量的定义上面都均已给出
g的讨论正式结束,现在让我们进入下一阶段的讨论吧,讨论A胜出比赛的概率。
我们不妨随着比赛的进程,用比分i:j ,来详细探讨吧。现令G(i,j)为到达比分i:j时的概率。由于i:j是相互独立的,亦即不同的比分为互斥事件,当比分i:j,不为最终状态时(就是胜负状态时),到达此比分的可能由比分i-1:j或i:j-1达到的。因此可得G(i,j)
G(i,j)=g(i-1,j)G(i-1,j) i≥1,j=0
G(i,j)=(1-g(i,j-1))G(i,j-1) j≥1,i=0
G(i,j)=g(i-1,j)G(i-1,j)+(1-g(i,j-1))G(i,j-1) i,j≥1
当比分为胜负比分时,若A胜,亦即i>j,到达这状态的比分只可能为i-1:j ,所以这时有:G(i,j)=g(i-1,j)G(i-1,j)
若A输,亦即i<j, ,到达这状态的比分只可能为i:j-1 ,所以这时有:
G(i,j)=(1-g(i,j-1))G(i,j-1)
其中G(0,0)=1
我们可以作i,j的通达图如下,
注:图中的每一整点(i,j),代表状态(比分)i:j。本通达图还与上述概率公式是一致的,我们可定义整点(i,j)的大小为G(i,j)。则所有到达这个整点的路径经过的整点的大小之和就是这个整点的大小。
其中L1表示A胜,L2表示B胜,比赛进程在折线L1、L2和i,j轴内。把此范围内的所有点(不包含L1,L2上的点)的集合 定义为点集V。对图分析,对于L1上任一点(i,j)的G(i,j)均由(0,0)到(i,j)上不同路径传递过来的概率之和。
如上图,(i,j)为汇点,其它各点上的数值表示从这点到(i,j)的不同路径数目。
我们就可推出
lnG(i,j)=Kij (0,0) lnG(0,0) + 其中G(0,0)=1
=
其中,tij(x,y)为从(x,y)到(i,j)经过边(x,y)(x+1,y)的路径数
t’ij(x,y)为从(x,y)到(i,j)经过边(x,y)(x,y+1)的路径数
所以在11分制下,A胜出一局的概率为
P1= 其中L1为折线如上所述
在21分制下,同理有
P’1= 其中L’1的定义类似于L1,G’(i,j)的定义与G(i,j)一致(图略)
之后,我们取lnP1与lnP’1作比较,有
其中K1,K2i,j,K3i,j,K4i,j,K5i,j,r1,r2i,j,r3i,jr4i,j,r5i,j 均为常数
本模型的建立到此为止。由于篇幅有限,数据庞大,常细数据比较就不再细述了,详细的比较分析请看I 。I 的模型建立已足可解决本问题了,II 的深入探讨到此为止。
III 对乒乓球11分制的利弊的综合评价及建议
由本模型可以看出11分制是可以接受的。因为它使比赛的“偶然性”增加,使比赛更加惊险,优势选手与稍弱的选手之间的竞技更具悬念性,二三流选手打败一流选手进入决赛的可能性更大,更能吸引观众。既然二三流选手有了更大的可能击败一流选手进入决赛,那么他们必然会打得更加勇敢,更加尽心尽力,因为结果不再像以前那样“必败无疑”,所以信心增加了,且也无什么心理压力,斗志更盛;另一方面,一流选手落败的可能性也变大了,他们知道此时不能再像以前一样,能十拿九稳地获胜,因为21分制下就算是输了先手在后阶段还可补救,但现在11分制下就不可能了,于是打球也会更尽力,心理上就丝毫也不敢放松、马虎了,每一球都力求打败对手,否则自己很可能处境将会非常狼狈,甚至会被淘汰出局。于是比赛双方就会殊死对抗,全力以付,浑身解数了,比赛会因此会变得更加激烈,更加精彩。也就是说“有利于形成对抗激烈,场面精彩的比赛”;比赛更吸引人。同时21分制改成11分制后赛程的缩短也不会使观众因长时间观看而感到过度疲倦,乏味,于是更多的观众会观看这些相对更惊险的比赛。同时因为比赛偶然性的增加,也使的更多弱势选手,乒乓球爱好者跃跃欲试,更勇敢地加入到比赛的行列中去,同时这些爱好者还会把身边的亲朋戚友也拉入这一运动行列中来,而亲朋戚友们见这种运动是这么多人喜爱的,且比赛是非常精彩,可赏性相当高,也就当然愿意加入了。可见“运动就是这样推广开去的”。观众的增加,和人们对此项运动的热爱的增加,将更有利于乒乓球市场的开发,乒乓球相关产品的销量将更加大,会有更多的商家加入乒乓球相关的行业,使乒乓球的产品品种将更丰富,品牌间竞争将更大,产品质量将更加高,相关服务行业也将更加兴旺。赞助商们的投入也回得到更大的回报,其产品,企业知明度将有所上升,更有利于赞肋商们的利益。同时,更多的商家会注意到这个“广告”是值得做的,于是就会竞相出资出力赞肋,在这种竞争下,将更有利于,乒乓球赛事办得更好,更精彩。可见两者是相互促进的,互惠互利的。
但利弊是相对的,相生的,有利必有弊。11分制也会因其赛程太短,使得选手心理压力更大,2球一换使一些对发球依赖较大的老队员不得不提前退役。但是这些问题我们都可以克服的,选手们会很快地适应这些变化的。
建议选手们应加强锻炼,积极适应新的规则决定胜负的还主要是技术方面的因素,但同时也应加心理素质,减少心理方面对比赛造成的负面影响。
总体来说11分制利大于弊,是可行的,值得推广的,而不会像羽毛球7分制一样实行不久就取消。
一、写好数模答卷的重要性(一)评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。(二)答卷是竞赛活动的成绩结晶的书面形式。(三)写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题(一)评阅原则:1、假设的合理性;2、建模的创造性;3、结果的合理性;4、表述的清晰程度。(二)答卷的文章结构 0、摘要 1、问题的叙述,问题的分析等,略 2、模型的假设与符号说明(表) 3、模型的建立(问题分析,公式推导,基本模型,最终或简化模型 等); 4、模型的求解(1)算法设计或选择, 算法思想依据,步骤及实现,计算框图;所采用的软件名称;(2)引用或建立必要的数学命题和定理;(3)求解方案及流程; 5、结果表示,分析与检验,误差分析,模型检验…… 6、模型评价,特点,优缺点,改进方法,推广…… 7、参考文献 8、附录 计算框图 详细图表 ……(三)要重视的问题 0) 摘要。包括:(1)模型的数学归类(在数学上属于什么类型);(2)建模的思想(思路);(3)算法思想(求解思路);(4)建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);(5)主要结果(数值结果,结论)(回答题目所问的全部“问题”) 表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。务必认真校对。 1) 问题重述。 2) 模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。(1)根据题目中条件作出假设(2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意 3) 模型的建立 (1) 基本模型: ①首先要有数学模型:数学公式、方案等;②基本模型,要求 完整,正确,简明; (2) 简化模型 ①要明确说明:简化思想,依据 ②简化后模型,尽可能完整给出 (3) 模型要实用,有效,以解决问题有效为原则。 ①数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。 ②能用初等方法解决的、就不用高级方法; ③能用简单方法解决的,就不用复杂方法;④能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。(4)鼓励创新,但要切实,不要离题搞标新立异 数模创新可出现在 ①建模中,模型本身,简化的好方法、好策略等; ②模型求解中; ③结果表示、分析、检验,模型检验; ④推广部分; (5)在问题分析推导过程中,需要注意的问题: 分析:中肯、确切; 术语:专业、内行; 原理、依据:正确、明确; 表述:简明,关键步骤要列出; 忌:外行话,专业术语不明确,表述混乱,冗长。4) 模型求解 (1) 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。 (2) 需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称 (3) 计算过程,中间结果可要可不要的,不要列出。 (4) 设法算出合理的数值结果。5)结果分析、检验;模型检验及模型修正;结果表示; (1) 最终数值结果的正确性或合理性是第一位的 ; (2) 对数值结果或模拟结果进行必要的检验。 结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进; (3) 题目中要求回答的问题,数值结果,结论,须一一列出; (4) 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; (5) 结果表示:要集中,一目了然,直观,便于比较分析 ; ①数值结果表示:精心设计表格;可能的话,用图形图表形式; ②求解方案,用图示更好; (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。6)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。7)参考文献8)附录详细的结果,详细的数据表格,可在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: ①模型的正确性、合理性、创新性; ②结果的正确性、合理性; ③文字表述清晰,分析精辟,摘要精彩。三、对分工执笔的同学的要求四.关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题 问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关键数据每个量,列出一组还是多组数――要计算一组还是多组数……五.答卷要求的原理 准确――科学性 条理――逻辑性 简洁――数学美 创新――研究、应用目标之一,人才培养需要 实用――建模。实际问题要求。六、建模理念:1 应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。2 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。
以上就是关于数学建模论文全部的内容,包括:数学建模论文、2017年全国大学生数学建模竞赛优秀论文、数学建模论文一般包括哪几部分等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)