国务院日前印发《“十四五”数字经济发展规划》(以下简称《规划》),明确了“十四五”时期推动数字经济健康发展的指导思想、基本原则、发展目标、重点任务和保障措施。
近些年,在信息通信技术的助推下,数字经济蓬勃发展,延伸到各行各业,深刻改革了行业生产方式以及人们的生活方式。
得益于5G通信网络建设,我们网上冲浪的速度越来越快。越来越多的生活新方式进入了人们的日常,在线学习、远程会议、网络购物、视频直播让我们感受到互联网平台的强大。
数字基础设施不断健全,数字经济新业态也亟需培育,首当其冲需要稳步推进的就是产业数字化。
对于制造业从业者而言,这些年可以感知到的就是工业数字化转型不断加速,工业企业生产设备数字化水平持续提升,制造业寻求数字化转型的战略倾向愈发明显,但少数企业迈上数字“云端”,多数企业还停滞在数字化转型初期。
但新一轮科技革命和产业变革深入发展,数字化转型已经成为大势所趋,受内外部多重因素影响,我国数字经济发展面临的形势正在发生深刻变化。
数字经济时代为行业发展传递了讯息,身处于制造业,也不能落于时代大潮,应充分把握数字化发展机遇,拓展企业数字发展新空间,驱动企业可持续发展。
对于制造业企业而言,在制造业的生产制造环节中融入数字基因是转型过程中的关键一步,借助一套完备的信息化系统让制造业数字化、网络化、智能化更加深入,建设完备的产业数字化转型支撑服务体系,助力精益生产模式落地,加快制造业企业建设黑灯工厂的步伐。
展望数字经济蓬勃发展,坐落于鹭岛的厦门攸信信息化技术有限公司针对制造业生产运营痛点,自主研发了一套信息化系统,驱动制造业数字腾飞,集成制造数据管理、仓库管理、质量管理、生产追溯、设备管理、供应商管理、生产计划管理、看板管理、生产过程控制等管理模块于一体,研发了一套面向制造业执行层的uMOM制造运营系统。
以完备的数字生产运营体系,深度挖掘数据价值。协同政策方针,助力制造业企业实现数字化转型升级,由点及面向全业务全流程数字化转型延伸拓展。
信息技术产业,又称信息产业,它是运用信息手段和技术,收集、整理、储存、传递信息情报,提供信息服务,并提供相应的信息手段、信息技术等服务的产业。信息技术产业包含:从事信息的生产、流通和销售信息以及利用信息提供服务的产业部门。
扩展资料:
信息技术产业主要包括三个产业部门:
①信息处理和服务产业,该行业的特点是利用现代的电子计算机系统收集、加工、整理、储存信息,为各行业提供各种各样的信息服务,如计算机中心、信息中心和咨询公司等。
②信息处理设备行业,该行业特点是从事电子计算机的研究和生产(包括相关机器的硬件制造)计算机的软件开发等活动,计算机制造公司,软件开发公司等可算作这一行业。
③信息传递中介行业,该行业的特点是运用现代化的信息传递中介,将信息及时、准确、完整地传到目的地点。因此,印刷业、出版业、新闻广播业、通讯邮电业、广告业都可归入其中。
信息产业又可分为一次信息产业和二次信息产业,前者包括:传统的传递信息情报的商品与服务手段,后者指为政府、企业及个人等内部消费者提供的服务。
参考资料来源:百度百科-IT行业
个人觉得有两点:
1年龄,年级大的人就不要太兴奋了,80后的比较喜欢尝试各种新鲜的东东,而且现在都有了一定的经济基础,这部分人是智能硬件的消费主体。90以后的甚至00后的,就一点喜欢,或者说对眼,不要讲功能,多讲外观和使用。
2方便,我说的是真方便,从使用到 *** 作,再到学习上,能一键 *** 作的不两下 *** 作,能不设置的就不设置,这是专门给懒人设计的。
认清现实吧 中国大数据产业的痛点和困难
大数据作为一个新兴的产业,一直在处于舆论的风口浪尖。就像互联网+的概念一样,大数据被神话了,被送上了“宗教”的神坛。大数据企业总是有一个担心,生怕大数据被捧得的太高,将来可能会被摔的很惨。
2015年中国大数据产业的热度从贵阳大数据交易所开始,到9月国务院的2015第50号文《促进大数据发展行动纲要》进入高峰,相信10月份的乌镇互联网大会上,大数据还会是一个大的热点。
大数据论坛上,数据产品和解决方案被介绍的很多。数据给企业带来的具体价值、数据应用场景、大数据产业的痛点介绍的很少。中国大数据产业经历着很多痛苦,大数据产业前景很好,但是大数据企业却很难做大,很难实现质的飞跃。中国大数据产业的痛点和困难如下。
1 大数据企业众多而弱小,很难实现产业优势中国大数据企业大概有200多家,将近60%集中在北京,以小微企业为主,年销售额达到十亿人民币的企业几乎没有。大数据产业处于春秋时代早期,各家诸侯割地而立,每家占领了一块小的细分领域,很难做大,都面临着同行的激烈竞争,有的领域例如舆情监控已成为红海。
大数据企业人数大多在几十人到几百人,少有千人以上的企业。没有一家大数据企业可以统领一个行业,没有一家企业占有细分市场10%的份额,没有一家大数据企业建立了行业标准,领导行业发展。
中国大数据产业处于极度分散状态,优秀的人才分布在不同企业,很难形成人才合力。各家企业规模小,很难在企业做深做大,很难利用大数据帮助企业实现业务提升。大多数企业的工具和数据很难满足企业整体的数据要求,中国的数据挖掘和分析产品也很难和国外的产品进行竞争。
大数据产业如果要形成产业优势,必须需要一批领军企业。参考国外大数据产业,中国在大数据基础架构,数据产品,数据工具、数据清洗和数据挖掘、数据分析、数据人才都需要产生一批标杆企业。每个领军企业都规模应该在千人以上,销售额应该在百亿以上,否则很难形成技术和人才优势,也很难利用大数据帮助客户实现业务提升。
贵阳大数据交易所《2015年中国大数据交易白皮书》提到2014年中国大数据市场规模为767亿元。这个数字看上去不错,估计其实真正和大数据工具和大数据产品相关的不足20%(业务价值提升)。大多数的经费都用于大数据基础平台(存储和计算)、咨询、报告等和业务价值提升相关度不大的领域。中国大数据市场销售额大多数集中在传统的IT企业例如IBM,Oracle,EMC,Intel,华为,联想等。真正大数据企业所有市场份额加起来可能就在百亿元左右。
中国大数据企业规模过小,领军企业缺少,行业过于分散,这些都是制约中国大数据产业发展的因素,也是产业做大的一个痛点。
2 外部数据是一个个孤岛,数据价值低数据是大数据产业发展的基础,具有商业价值的数据可以帮助企业洞察客户、数字化运营、风险管控、精准营销、预测和决策等。具有商业价值的数据和商业分析真正能够帮助企业提升业务,创造出新的价值。
中国的大数据市场还不成熟,很多大数据企业拥的数据都是片段的数据,很难形成完整的,具有商业价值的数据。大数据市场的数据质量和企业的数据需求有较大的差距。外部数据大多处于孤岛状态,数据之间很少流动和整合;孤立、不流动、没有整合的数据很难帮到企业,很多需要数据的企业不得不从多个大数据企业采购数据,效率很低,采购来的数据价值不高,数据整合的难度较大,数据采购的整体费用过高。
大家都看到了数据分散的弊端,于是很多地方都建立了大数据交易市场,帮助大家进行数据交易和数据采购。由于缺少法律保护,很多企业不太想在交易市场进行数据交易,往往还是采用一对一的数据交易,这种交易方式可以保护交易双方的利益。具有商业价值的数据还在开发中,大数据交易市场,缺少大量可以进行交易的数据。大数据交易市场这种商业模式,还需要用很长的时间去证明。
中国质量最好的数据在金融行业、BAT、电信运营商,这些企业比较谨慎,很难向外部输出数据。这三大行业自身的主营业务也不在数据,其数据产品生产和输出的愿望也不强烈。政府的数据正在逐步开放,但是其数据质量、集中度、输出方式等多存在很大多挑战。在中国大规模的数据开放,至少需要3年时间才能达到商业应用要求。
3 大多数企业客户,对数据商业应用敏感度低大多数企业对数据有需求,但是其对数据商业敏感度很低。对数据商业应用的场景以及数据技术了解很少。即使是数据商业敏感度较高的银行,至少要沟通三次以上,其才能够建立起数据价值理念。其他行业例如制造业,房地产业,零售业,他们的数据商业敏感度更低。甚至万科的王石也大声疾呼,不要和房地产业谈大数据应用,房产行业数据还不全,很多还是手工数据。于是某个领先的电商开始帮助万科进行数据规划建设,研究大数据在房地产行业的应用。
已有的大数据企业商业案例中,大部分都是大数据企业主动去找客户谈合作,为企业提供数据产品、数据工具或数据技术,目的是帮助企业提升业务。但是这种商业模式很累,市场很难被引爆,被动的数据商业应用,往往和业务结合较弱,无法迅速帮助企业利用数据提升业务,同时也无法解决业务发展瓶颈。
企业内部人士深度了解业务需求,他们缺少的是市场数据和消费者反馈,缺少的数据分析方法和工具。企业内部人士更应该成为大数据商业应用的主力,参加一些行业活动,从需求出发,主动寻找数据和解决方案。移动互联网时代,商业竞争策略很清晰,一个是快,一个是要利用数据进行决策。
大数据产业的发展,不仅仅是大数据企业自身的事情,也是各家企业自身的事情。企业客户也应该依据业务需要,主动到市场寻找数据和解决方案,提升数据商业敏感度,从业务场景出发,寻找具有价值的数据。
4大数据技术和产品同业务结合深度不够市场上所有大数据企业和客户都面临一个难题,就是数据解决方案同客户业务结合的深度不够,数据对业务整体推动效果不如期望,这也是大数据产业爆发的一个痛点。由于外部数据质量、企业用户数据敏感度、企业管理方式、商业数据人才等问题,大数据解决方案很难和业务深度结合。
大数据核心价值就是揭示事务发展规律,帮助企业利用数据进行科学决策。目前大数据的商业应用领域主要集中在数据采集、数据存储、数据计算、用户画像、精准营销等领域。大数据最具商业价值的预测和辅助决策功能并没有被充分利用。特别是在重大战略决策方面,大数据的作用并不明显。企业的产品开发,市场策略,战略决策还是依靠过去的精英决策和经验主义。未来社会只有两类企业,一种是利用数据发展的企业,另外一种是不重视数据被淘汰的企业。
大数据企业如果想发展壮大,如果想成为行业领先的企业,其必须放弃短期利益,深入到客户的运营中去,了解客户的数据,了解客户的业务,了解客户的商业需求。同时利用数据了解客户,了解市场,了解业务场景。数据和业务深度结合的核心是掌握正确的数据、正确的方法、正确的工具。业务人员要懂数据,技术人员要懂业务。复合型数据人才是数据生意的关键,业务人员掌握数据技术的门槛较高,但是技术人员了解业务的门槛很低,复合性人才倾向于从技术人才培养开始。
企业内部的数据人才和大数据企业的数据人才需要互相学习,了解对方环境和需求,在同一个平台上进行对话和沟通。数据团队需要深入了解业务场景和背后的规律,从业务出发,从场景出发,从数据出发,将大数据解决方案同业务深度结合,利用数据推动业务发展,发挥大数据预测规律的核心价值。
5 专业数据挖掘工具和人才缺失传统的数据挖掘工具和BI系统存在很久了,通过各类报表展示,让管理层了解企业运营信息,过去的确帮助企业提高管理水平,达到了预期目的。
在大数据时代,企业需要的是实时数据,需要的是高效工具,需要的是决策支持和预测。传统的数据挖掘工具的性能和灵活性已经不能满足企业的需要,另外非机构化数据的应用也对传统数据工具提出了挑战。BI领域中的SAS,SPSS,TD等数据工具越来越被边缘化,R语言正在成为数据统计和可视化的新宠。
数据的时间价值正在得到重视,特别是金融企业,所有的业务部门都期望在最短的时间里,看到资金使用情况,客户交易情况,风险管控情况。企业越早了解信息,就会越早进行决策,时间就是Money。过去数据需求可能是T+5或者T+30,现在的数据需求往往是T+1或者T+0,数据实时性、准确性、相关度被提到了一个非常重要的地位。业务的需求已经很明显了,但是数据工具和人才却是一个很大的挑战。
中国200多家大数据企业,看到了大数据产业的曙光,看到了大数据产业的价值,同时也在经历着大数据企业的痛苦。大数据产业发展很快,市场正在逐步变大,但是其产业优势不明显,优势企业很少,数据商业化较慢,市场还不成熟,客户数据商业敏感度较低,缺乏高质量数据工具和人才。所有大数据企业内心的感受就是,站在了时代的风口,选对了方向和行业,但是发展壮大还是很难。200多家大数据企业正在努力耕耘着大数据产业,痛并快乐着。
以上是小编为大家分享的关于认清现实吧 中国大数据产业的痛点和困难的相关内容,更多信息可以关注环球青藤分享更多干货
兄弟,建议分析下你的年龄、家庭情况和目前你的野心后判断。年龄太大、家庭等着你养活、野心已经被磨灭了,建议还是继续在熟悉的地方求变,沟通上级,协调左右,没必要跳槽再重头来。因为IT在制造业的核心在于提高效率大于产生费用,但恰恰不可量化,中小企业领导很难重视得到。
当然如果你还年青,家庭经济不错,还存在野心事业之说,就去大企业闯一把,在大企业IT不是简单的IT,有很多类似流程管理等等的岗位,更有成就和挑战。
以上就是关于“十四五”期间,制造业要如何完成数字化转型全部的内容,包括:“十四五”期间,制造业要如何完成数字化转型、什么是IT行业、电脑商家,IT渠道卖智能硬件的痛点在哪等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)