- 这里p=0.2 表示,每个神经元都有0.2 的概率被丢弃(变成0)
m = nn.Dropout(p=0.2)
- 代码:
from torch import nn
import torch
m = nn.Dropout(p=0.2)
input1 = torch.randn(4, 5)
output = m(input1)
print(output)
- 输出1:
tensor([[-0.6151, -0.0000, -1.0482, -0.5827, 2.8544],
[ 0.1094, 0.2557, 0.0000, -0.8655, 0.4116],
[ 0.7518, 0.1360, 0.8428, 1.9005, -2.1760],
[-0.0000, -1.3959, -1.4706, -1.9726, 0.5573]])
- 输出2:
tensor([[-3.1378, 0.4837, 0.3389, 0.0000, 1.6898],
[ 0.7625, 0.3036, 0.6053, 2.1331, 0.9009],
[ 0.0000, -0.6067, 0.4107, 0.0000, -2.7134],
[ 0.4862, 0.0424, -0.2511, -0.3606, -1.6395]])
- 输出3
ensor([[-1.0125, -0.0000, -1.7310, -0.0790, -0.5104],
[ 0.4416, 0.2899, -1.0046, 1.4640, 2.3754],
[ 0.1155, 0.0000, 0.1253, -0.0000, 1.4655],
[-0.7001, -0.4758, -0.0000, -0.0148, 1.7307]])
并不是说,总的神经元个数(比如4×5=20),然后乘以概率p,就能得到置零的个数是4个,并不一定是四个!!!!
0.2表示的是,每个神经元都有0.2 的可能性置零。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)