线程池(Thread Pool)是一种基于池化思想管理线程的工具,经常出现在多线程服务器中,如MySQL。
创建线程本身开销大,反复创建并销毁,过多的占用内存。所以有大量线程创建考虑使用线程池。线程池不用反复创建线程达到线程的复用,更具配置合理利用cpu和内存减少了开销,性能会得到提高,还能统一管理任务
比如服务器收到大量请求,每个请求都分配线程去处理,对服务器性能考验就比较大,如果创建5个以上线程考虑使用线程池。
线程过多会带来额外的开销,其中包括创建销毁线程的开销、调度线程的开销等等,同时也降低了计算机的整体性能。线程池维护多个线程,等待监督管理者分配可并发执行的任务。这种做法,一方面避免了处理任务时创建销毁线程开销的代价,另一方面避免了线程数量膨胀导致的过分调度问题,保证了对内核的充分利用。
而本文描述线程池是JDK中提供的ThreadPoolExecutor类。
当然,使用线程池可以带来一系列好处:
- 降低资源消耗:通过池化技术重复利用已创建的线程,降低线程创建和销毁造成的损耗。
- 提高响应速度:任务到达时,无需等待线程创建即可立即执行。
- 提高线程的可管理性:线程是稀缺资源,如果无限制创建,不仅会消耗系统资源,还会因为线程的不合理分布导致资源调度失衡,降低系统的稳定性。使用线程池可以进行统一的分配、调优和监控。
- 提供更多更强大的功能:线程池具备可拓展性,允许开发人员向其中增加更多的功能。比如延时定时线程池ScheduledThreadPoolExecutor,就允许任务延期执行或定期执行。
线程池解决的核心问题就是资源管理问题。在并发环境下,系统不能够确定在任意时刻中,有多少任务需要执行,有多少资源需要投入。这种不确定性将带来以下若干问题:
- 频繁申请/销毁资源和调度资源,将带来额外的消耗,可能会非常巨大。
- 对资源无限申请缺少抑制手段,易引发系统资源耗尽的风险。
- 系统无法合理管理内部的资源分布,会降低系统的稳定性。
为解决资源分配这个问题,线程池采用了“池化”(Pooling)思想。池化,顾名思义,是为了最大化收益并最小化风险,而将资源统一在一起管理的一种思想。
“池化”思想不仅仅能应用在计算机领域,在金融、设备、人员管理、工作管理等领域也有相关的应用。
在计算机领域中的表现为:统一管理IT资源,包括服务器、存储、和网络资源等等。通过共享资源,使用户在低投入中获益。除去线程池,还有其他比较典型的几种使用策略包括:
- 内存池(Memory Pooling):预先申请内存,提升申请内存速度,减少内存碎片。
- 连接池(Connection Pooling):预先申请数据库连接,提升申请连接的速度,降低系统的开销。
- 实例池(Object Pooling):循环使用对象,减少资源在初始化和释放时的昂贵损耗。
SpringBoot使用线程池我们常见的有两种方式:
- 使用默认的线程池**@Async**
- 使用自定义的线程池
第一步:在Application启动类上面加上@EnableAsync
@SpringBootApplication
@EnableAsync
public class ThreadpoolApplication {
public static void main(String[] args) {
SpringApplication.run(ThreadpoolApplication.class, args);
}
}
第二步:在需要异步执行的方法上加上@Async注解
@Service
public class AsyncTest {
protected final Logger logger = LoggerFactory.getLogger(this.getClass());
@Async
public void hello(String name){
//这里使用logger 方便查看执行的线程是什么
logger.info("异步线程启动 started."+name);
}
}
第三步:测试类进行测试验证
@Autowired
AsyncTest asyncTest;
@Test
void contextLoads() throws InterruptedException {
asyncTest.hello("afsasfasf");
//一定要休眠 不然主线程关闭了,子线程还没有启动
Thread.sleep(1000);
}
方式二:使用自定义的线程池
第一步:创建一个ThreadPoolConfig 配置一个线程池,并设置拒绝策略为CallerRunsPolicy
@Configuration
public class ThreadPoolConfig {
@Bean("taskExecutor")
public Executor taskExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
//设置线程池参数信息
taskExecutor.setCorePoolSize(10);
taskExecutor.setMaxPoolSize(50);
taskExecutor.setQueueCapacity(200);
taskExecutor.setKeepAliveSeconds(60);
taskExecutor.setThreadNamePrefix("myExecutor--");
taskExecutor.setWaitForTasksToCompleteOnShutdown(true);
taskExecutor.setAwaitTerminationSeconds(60);
//修改拒绝策略为使用当前线程执行
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//初始化线程池
taskExecutor.initialize();
return taskExecutor;
}
}
第二步:如果配置有多个线程池
@Configuration
public class ThreadPoolConfig {
@Bean("taskExecutor")
public Executor taskExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
//设置线程池参数信息
taskExecutor.setCorePoolSize(10);
taskExecutor.setMaxPoolSize(50);
taskExecutor.setQueueCapacity(200);
taskExecutor.setKeepAliveSeconds(60);
taskExecutor.setThreadNamePrefix("myExecutor--");
taskExecutor.setWaitForTasksToCompleteOnShutdown(true);
taskExecutor.setAwaitTerminationSeconds(60);
//修改拒绝策略为使用当前线程执行
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//初始化线程池
taskExecutor.initialize();
return taskExecutor;
}
@Bean("poolExecutor")
public Executor poolExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
//设置线程池参数信息
taskExecutor.setCorePoolSize(10);
taskExecutor.setMaxPoolSize(50);
taskExecutor.setQueueCapacity(200);
taskExecutor.setKeepAliveSeconds(60);
taskExecutor.setThreadNamePrefix("myExecutor2--");
taskExecutor.setWaitForTasksToCompleteOnShutdown(true);
taskExecutor.setAwaitTerminationSeconds(60);
//修改拒绝策略为使用当前线程执行
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//初始化线程池
taskExecutor.initialize();
return taskExecutor;
}
@Bean("taskPoolExecutor")
public Executor taskPoolExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
//设置线程池参数信息
taskExecutor.setCorePoolSize(10);
taskExecutor.setMaxPoolSize(50);
taskExecutor.setQueueCapacity(200);
taskExecutor.setKeepAliveSeconds(60);
taskExecutor.setThreadNamePrefix("myExecutor3--");
taskExecutor.setWaitForTasksToCompleteOnShutdown(true);
taskExecutor.setAwaitTerminationSeconds(60);
//修改拒绝策略为使用当前线程执行
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//初始化线程池
taskExecutor.initialize();
return taskExecutor;
}
}
考虑到@Autowired 以及@Resource两个注入时的存在多个类如何匹配问题,我们在注入时指定具体的bean就会调用对应的线程池!!!
@Autowired
AsyncTest asyncTest;
@Autowired
ThreadPoolTaskExecutor poolExecutor; //会去匹配 @Bean("poolExecutor") 这个线程池
@Test
void contextLoads() throws InterruptedException {
asyncTest.hello("async注解创建");
poolExecutor.submit(new Thread(()->{
logger.info("threadPoolTaskExecutor 创建线程");
}));
//一定要休眠 不然主线程关闭了,子线程还没有启动
Thread.sleep(1000);
}
注意:如果有多个线程池,但是在@Async注解里面没有指定的话,会默认加载第一个配置的线程池
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)