真空中的光速恒定不变,和它具有的能量没有关系。
根据波粒二象性及其解释,光可以认为是大量光子组成的概率波。如果传播过程中光的能量损失,说明有一部分光子被吸收了,而单个光子具有的能量不变(E=hν,h是Planck常量,ν为光的频率)。例如γ射线被吸收时,部分γ光子损失能量,脱离原光子流。事实上,光子就是指“光量子”,是光的具有最小能量的单位。
质能方程E=mc²中m指的是静质量,而相对论认为光子的静质量为零(实验表明光子的静质量上限小于10^-51kg),在这里不适用。不过对于光子E=mc²=hν还是成立的,只是这里的E不是指静质量蕴涵的静能量而是光子的动能(不能用经典力学的Ek=05mv²去算),这里的m是光子的动质量。由于h、ν、c都是有限的,所以m和E也是有限的,不存在能量无限的现象。
会改变的。
因为光速不变的前提是真空,其实就是真空中的光速是一个极限,很多极限量都不受参考系影响(如质量为零和其他基本物理量都是)!而如果低于极限的话对于不同参考系就会有不同的结果!
就像满分100分,你得100分,那就是绝对的第一,而如果你考90分,那就要看其他人的分数了(看参考系)
这是我个人的理解,我认为这样理解应该是对的!!呵呵,思考真的挺有意思。。
你想的对,声音对介质声速不变,与声源无关。
爱因斯坦定义的时间是位于其它参照系的钟,通过光传递过来的示数,这个定义就不是科学的。类似用于声音,就要定义时间是通过声音传递的钟示数。这样接近声速运动,时间也接近停止。
参见百科:声速相对论。
简介:相对论诞生已过百年,其间反对的声音从来没有停止过,本人对支持和反对的声音进行了整理归纳,总结,并提出一些新的观点,得到了个人的结论,那就是相对论描述的是现象,不是物理本质,光是普通的波,波粒二相性是介质中的粒子表现出来的。爱因斯坦的相对论有些正确,有些需要修正。
发表本文将观点普及,接受大家质疑,站在爱因斯坦的肩膀上完善相对论。
科学的定义是:对一定条件下物质变化规律的总结。
按照这个定义出发,我们可以知道:弦理论、11维空间理论、黑洞理论、光在真空中固定速度为C,都是未经证实的理论,不是科学理论。
科学家的定义是:发表一些独到的科学见解,并得到大部分科学研究人员认可的人,或得到权威科学研究机构认可的人。(科学家本是尊称无需准确定义)
物理学是智慧生物之间描述无生命物质运动变化规律的科学。
爱因斯坦自己的理解,速度无穷大,“绝对同时”有意义,但观测速度上限是光速,因此“绝对同时”无意义。
这里表明,相对论是因为光速的慢,引起的观测问题,对于思维速度无穷大的人,是不需要测量的,绝对同时有意义,且可以明白相对论是测量现象,与物理本质不同;对于思维速度不超过光速的人,此类问题无意义。
爱因斯坦在《论动体的电动力学》中关于光的假设有两个:任何光线在‘静止的’坐标系中都是以确定的速度V运动着,不管这道光线是由静止的还是运动的物体发射出来的;光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。
显然爱因斯坦没有意识到这两个假设的不同。
大学教材修正的假设:在彼此相对作匀速直线运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
牛顿时空观认为距离和时间,在各个参照系测得的都相同,因此光速是相对的,可变的,而不是绝对的。
首先我们定义1光秒的含义:光在某种稳定介质中一秒所运动的距离。介质可以是水,这个长度是22510^8米,介质可以是玻璃,这个长度是2010^8米,甚至可以是声音一秒的运动距离,介质是空气,这个长度是340米,还可以是报道过的试验,在某种介质中,光速是17米/秒,在这种介质中1光秒长度为17米,这都不影响下面的论述。
假设有一个1光秒长的玻璃,我们从起点A发出光,一秒时到达B,我们说测得光速1光秒/秒,多次试验结果不变。现在我们处于一个以1米/秒相对玻璃运动的参照系,方向与光相同,一秒时,我们距离B为1光秒-1米,我们在这个参照系测得光运动的距离是1光秒-1米,光速是(1光秒-1)/秒。光速是相对的,这是牛顿时空观结果,速度是相对的,是以变化距离除以时间得到。我们在学习相对论之前,全是用的这种算法,例如A车对地面车速50公里每小时,B车30公里/小时,A相对于B的车速为50-30=20公里每小时。这是速度叠加原理。
所以说相对论必须假设光速不变才能推导,而在牛顿时空观中,是不能被证明光速不变的。很多人以为爱因斯坦相对论可以离开光速不变假设,这是不对的。爱因斯坦为了保证光速不变,需要修改长度(尺缩),时间(钟慢),就是认为运动的参照系测得的时间,与静止参照系不同,这已经是与牛顿理论完全不同了,而不是兼容关系。连中国大学教材都在相对论假设中增加了“真空中”,变为:在彼此作匀速运动的任一惯性参考系中,所测得的光在真空中的传播速度都是相等的。
爱因斯坦相对论理由1:19世纪末在光的电磁理论发展过程中,有人认为宇宙间充满以太,光是靠以太传播的。而迈克耳孙和莫雷实验证实,上述以太是不存在的。
此理论的提出是因为观测光从木星卫星到地球,速度大致相等,而无论地球向卫星运动还是背向卫星运动。小学我们就知道计算相遇时间,当相向时,是速度相加t=L/(v1+v2),反相时是速度相减t=L(v1-v2),只有v1大于v2才能追上。因此有人提出光是波,波的运动靠介质,而太空中是真空,所以必须假设存在一种在真空中也存在的物质作为光的介质,所以以太这种光介质被假设出来。由于地球没有特殊性,所以以太是独立于地球运动的。
当时的人不知道真空的相对性,在声音不能在真空中传播的试验中,如果我们加大产生声音的功率,或用设备提高声音的侦听能力,原来认定的真空,又不能称为真空。当时的人以为光是粒子,所以才有速度叠加的想法。当时的人以为宇宙中是真空,所以光的介质必须是一种特殊的,充满真空的,定名为以太。而今天,我们很容易想到,空气、玻璃、水,这些都是光传播的介质,光在这些介质中的运动表现,只与介质相关,而与测量参照系无关,举例来说,玻璃中的光相对玻璃是光速,与玻璃相对测量参照系的运动无关。由坐在车中测量远处钟声试验可知,车中的声速不变,与车向钟运动,还是远离大钟运动没有关系。以前认为的以太本来就没有必要,所以以太不存在的解释,并非只有相对论一种,莫雷实验也不能否定这种假设,因此它不能作为推导相对论时空观的充分证据。
爱因斯坦相对论理由2:1964年到1966年,欧洲核子中心实验结果:一种粒子以099975c的高速飞行,辐射出的光子,实验室速度仍是C。
实验仅能证明,在稳定的空气中,光速不变。而不能引申为相对任何参照系光速不变,因为这个实验中我们没有改变参照系。
爱因斯坦相对论理由3:洛伦兹变换:
因为书中的P事件对Y、Z轴有分量,光速要考虑球型,与书上结论不同(是错,但不是论述重点),因此为简单起见,假设P事件发生在X轴上。
O和O1两个坐标系,O坐标系相对于P事件静止,O1坐标系向P事件以V运动,P事件发生时,O与O1原点重合。
在O坐标系看来P事件发生在T时刻,位置是X,O1坐标系看来P事件发生在T1时刻,位置是X1。
X=X1+VT1
X1=X-VT
变换如下:
X=K(X1+VT1) (1式)
X1=K1(X-VT)
O与O1等价因此K=K1
X1=K(X-VT) (2式)
X=CT , X1=CT1 (3式)
1、2式相乘带入3式
XX1=K2(X-VT)(X1+VT1)
K= 1 / (1-(V/C)2)(1/2)
也许很多人注意到了,在推导时,爱因斯坦用到的“在O坐标系看来P事件发生在T时刻,位置是X,O1坐标系看来P事件发生在T1时刻”,这说明相对论是“观测”效应,在任何一个相对论推导中,都是这样用的,如果改为“听来”就可以得到声速相对论了,如果改为“想”来,因想的速度无穷大,又不存在相对论效应。而且公式的推导,并不符合经典理论,大家应该注意,两式中的V默认为相等,而经典理论中速度的相对性是由绝对距离变化除以绝对时间得到,而在“看来”这种测量效应时,两者速度不等。以声音为例,对介质静止系听对介质做1/2声速运动的钟发出的声音,计算速度时用测量传回来的距离除以自己的钟显示的时间,计算速度为1/3声速,用传递回来的时间计算速度为1/2声速,运动的钟用自己的距离变化除以自己的时间,速度为1/2声速,除以传过来的时间,速度为声速。各参照系的钟示数,不代表时间。
爱因斯坦相对论理由4:一运动列车,列车中间一个光信号接收器,地面一个光信号接收器,当车上车下两个接收器重合时,车头和车尾各自发出一个闪光,地面接收器同时收到信号,而光传播是需要时间的,在这段时间内,车又向前运动了,因此列车中间的接收器先接收到车头的光,后接收到车尾光,结论:不同事件的同时性不是绝对的,只是相对概念。
相对论是以光速不变做为前提的,与参照系无关,因此才不用说光源是相对地面静止,还是相对列车静止,列车中间的接收器由于到头尾距离相等,因此按相对论也应该同时收到光信号。
我们认为本例的条件不全:
1 火车内的空气对火车静止,火车外的空气对地面静止,火车长度为光在空气中需要T秒通过,闪电发生时作为时间原点,两相对匀速运动的参照系可以建立相同的时间。结果:T/2秒,地面接收器与火车中接收器同时收到两端信号,符合相对论结论和伽利略变换,光速不变,与参照系无关。
2 火车内空气对地面静止(无厚度平板),火车速度为V。结果:地面接收器T/2秒同时收到两端信号,火车中(TC/2)/(C+V)秒收到车头信号,(TC/2)(C-V)秒收到车尾信号,符合速度叠加原理。
用声音代替光,可以做出这两个结果,而论述中为什么要选择违反相对论假设的一个结果呢?另外,如果我们用无穷大速度测量,则火车来不及运动,测量就已经完成,闪光还是同时的,所以很多人同爱因斯坦一样知道,相对论只是由于光速的慢而引入的测量效果,不知道爱因斯坦他老人家怎么讲着讲着,自己糊涂了,认为结果是真实的。
爱因斯坦相对论理由5:用车上人描述物体下落过程是直线,车下人描述物体下落过程是曲线来说明物体运动描述的相对性。
这是不对的。只要知道车速,车上人可以计算出车下人应该看到何种曲线,车下人也可以算出车上观测物体是否直线。
爱因斯坦相对论理由6:物理学定律在一切惯性参考系中都具有相同的数学表达形式。
这个叙述不严谨。一个相对地球做匀速直线运动的火车,可以近似看做一个惯性参考系,那么在火车上放氢气球与地面上放氢气球,运动轨迹不可能等价,根本不能用一个系数使其等价。在什么情况下才能认为等价呢?当空气作为静止参照系,地表静止物与火车相对空气做等速运动时等价。这时在空气参照系看两个氢气球都是直线上上升,两个运动参照系各自描述的上升斜率一致,有相同的数学表达形式。或者当空气相对地表静止时,火车对氢气球运动的描述,与空气对火车静止,地面对氢气球运动的描述等价。(介质相关性)
爱因斯坦相对论理由7:光在真空中的速度相等。(这个在相对论原文中是不存在的,应该是后人理解后添加的)
这一点我们不反对,它符合牛顿定律,但是从其它波的规律可知,任何波的传递,都需要介质,在达到一定的真空度时,波都无法传递,因此理论上光的传递也需要介质,我们还不能阻止光传递是因为我们还不能制造让光不能传递的真空度。光在真空中,速度也应该为0。如果真空中光速真是0,则构成洛伦兹变换推导错误的又一论据,因为等式两边同除以光速。
爱因斯坦相对论理由8:声音无法在真空中传播,光可以在星际空间传播
真空也是有相对性的,在真空中声音不能传播试验中,我们用助听器增强接收能力,或者提高放音的功率,又可以听到声音了。说明真空并没有阻挡传播,而是传播的能量不足以被接收者识别!这个现象我们也可以用光做,在一个较长距离内,低功率的光不能被接收,高功率的光能够被接收。甚至可以预言,可以被接收的微光,在介质被抽真空后,变得无法接收。
爱因斯坦相对论理由9:“光子”能量是一份份的,且具有动量,因此光是粒子。
由于声音能量,需要介质传递,当真空度降低的时候,需要有粒子过来,才能传递声能,没有粒子过来,就没有声能过来,因此试验中,声音能量也是一份份传递的。声音也具有动量,可没人承认“声子”是粒子。
爱因斯坦相对论理由10:“光子”经过太阳,光线弯曲
在光有粒子性这一点上,爱因斯坦与牛顿是一致的。但是光的波动说也能解释这个弯曲,而不需要假设光是粒子!我们知道光在经过密度不同的空气时会产生折射,最常见的现象是在阳光强烈的时候,远处公路路面象有水一样。太阳周围的大气,密度也是不均匀的,也会产生折射。不仅是光有折射现象,任何波,在介质密度不同的条件下,都会发生弯曲和折射。
爱因斯坦相对论理由11:速度接近光速,质量无限增加。有实验将粒子加速到接近光速,确实发现质量增加现象。
也有实验将粒子加速到超过一种介质中的光速,发现在突破光速的时候,也有类似超过声速时会发生的声障现象,他们称之为光障,必须克服光障的阻力,才能突破光速。联系两个实验,是否前一个实验错误的把光障阻力,当成质量增加?有待进一步核实。
爱因斯坦相对论理由12:爱因斯坦论述的光速不变,是在“静止”的参照系测得的(可以是相对做匀速直线运动的参照系,这就是伽利略相对性原理),但是,从一个参照系去测量另一个参照系是否还能够得到光速不变?牛顿理论将给出否定答案,而爱因斯坦并未解释为什么还是光速不变。
于是有人提出:各参照系测得的真空中的光速不变。似乎可以解决这个问题了。
但是除光外的其它波都是靠介质传递的,在各参照系中,测得的真空中所有机械波的速度都不变,都是0。这个不用假设,有这个前提,是否足够推导相对论?如果不能,说明真空假设的推论是有问题的,如果能,则说明任何波都有对应的相对论。这个结果结果奇怪吗?
爱因斯坦相对论双生子悖论:
两个相同飞船,各坐双生子中的一个,两飞船匀速直线远去,按相对论,动钟变慢,两人得出相反结论:对方在动,钟比自己慢。当两个飞船以同样加速度调转方向,变远离为靠近,到相遇时两钟应相同,而不是根据任何一个的相对论观点,对方的钟慢。这个结论即使用广义相对论解释,也应一致。
如果结论是相同,除了得出相对论动钟慢结论是观测效果,还能如何解释?
爱因斯坦相对论子杀父悖论:
按照爱因斯坦相对论结论,超过光速时间倒流,孩子可以回到出生前杀死父亲,则由于父亲已死,不会再生孩子,孩子则不会杀死父亲,父亲就不会死,也就会生孩子。这是个逻辑悖论。而修正后的相对论认为相对论效应只是观测效应,则不存在这个问题。
爱因斯坦空间悖论:
在狭义相对论的洛仑兹公式推导过程中,假设了空间平坦,才能使用线性方程,而广义相对论假设空间不平坦,洛仑兹变换则不能成立,也就失去了理论支持,说明广义相对论与狭义相对论,不能共用相对论原理。对此爱因斯坦没有解释。
超光速问题:
在七十年代前后,射电天文学家发现,宇宙中有4个致密的河外类星体射电源。河外射电星体有时会抛出一、两对射电星云——射电子源,这似乎是一次猛烈爆炸引起的,它们彼此高速分离,其中大约有半数出现超光速运动,甚至达到光速的5倍至10倍。
塞弗特星3C120的自身膨胀速度就超过了光速的4倍,类星体3C273,3C345,3C279各自的两个组成部分的分离速度是光速的7倍,10倍,19倍。
其它问题
由于重力等效加速度,加速度大时间慢。因此应该定义特定加速度的条件下的铯钟才是标准的。就象以前理解热胀冷缩,并没有认为热的时候空间变大一样。在高空飞行时,重力加速度对钟的影响,远大于相对论效应,也就是说,我们根据试验而不是理论计算出来的重力影响,完全可以淹没相对论效应,说相对论效应存在与不存在,只要在重力关系中进行调整,完全不存在理论问题。所以相对论效应在这个条件下是不能被证明的。
用声速测量接近声速运动的物理现象,其理论推导同相对论完全相同,也可以得到同相对论同样的结果,仅是用声速替换了光速。前提条件:声音介质中声音传播的速度不变。也有类似的钟慢尺缩现象。
在任意一种均匀稳定静止介质中传播的波,相对介质波速不变。
波速的计算方法为:波源发出波到接收器收到波的距离和时间之商。与波源发出波后的运动无关。
环球铯钟实验:以静止在实验室里的原子钟为标准,让一个原子钟绕地球一周,再与实验室里的原子钟比较。实验详情见:>
光速在大气内行走与光速在宇宙内行走有没有速度上的差异呢 那要看你只的是光还是物件用光速走。 光的话是没有速度上的差异
因光不受大气影响
物件因为受大气阻力影响速度上的差异会很明显
就是由光速减成超音速
因为物件和空气的磨擦
物件虽要抵受高热
万一抵受不了就会像哥伦比亚号一样
空中解体
客死异乡。 光速的测定 光速的测定在光学的发展史上具有非常特殊而重要的意义。它不仅推动了光学实验的反站,也打破了光速无限的传统观念;在物理学理论研究的发展里程中,它不仅为粒子说和波动说的争论提供了判定的依据,而且最终推动了爱因斯坦相对论理论的发展。 在光速的问题上物理学界曾经产生过争执,克普勒和笛卡尔都认为光的传播不需要时间,是在暂态进行的。但伽利略认为光速虽然传播得很快,但却是可以测定的。1607年,伽利略进行了最早的测量光速的实验。伽利略的方法是,让两个人分别站在相距一英里的两座山上,每个人拿一个灯,第一个人先举起灯,当第二个人看到第一个人的灯时立即举起自己的灯,从第一个人举起灯到他看到第二个人的灯的时间间隔就是光传播两英里的时间。但由于光速传播的速度实在是太快了,这种方法根本行不通。但伽利略的实验揭开了人类历史上对光速进行研究的序幕。 1676年,丹麦天文学家罗麦(Olaus Romer 1644-1710)第一次提出了有效的光速测量方法。他在观测木星的卫星的隐蚀周期时发现:在一年的不同时期,它们的周期有所不同;在地球处于太阳和木星之间时的周期与太阳处于地球和木星之间时的周期相差十四五天。他认为这种现象是由于光具有速度造成的,而且他还推断出光跨越地球轨道所需要的时间是22分钟。1676年9月,罗麦预言预计11月9日上午5点25分45秒发生的木卫食将推迟10分钟。巴黎天文台的科学家们怀着将信将疑的态度,观测并最终证实了罗麦的预言。 罗麦的理论没有马上被法国科学院接受,但得到了著名科学家惠更斯的赞同。惠更斯根据他提出的资料和地球的半径第一次计算出了光的传播速度:214000千米/秒。虽然这个数值与目前测得的最精确的资料相差甚远,但他启发了惠更斯对波动说的研究;更重要的是这个结果的错误不在于方法的错误,只是源于罗麦对光跨越地球的时间的错误推测,现代用罗麦的方法经过各种校正后得出的结果是298000千米/秒,很接近于现代实验室所测定的精确数值。 1725年,英国天文学家布莱德雷 (J.Bradley,1693-1762) 发现了恒星的"光行差"现象,以意外的方式证实了罗麦的理论。刚开始时,他无法解释这一现象,直到1728年,他在坐船时受到风向与船航向的相对关系的启发,认识到光的传播速度与地球公转共同引起了"光行差"的现象。他用地球公转的速度与光速的比例估算出了太阳光到达地球需要8分13秒。这个数值较罗麦法测定的要精确一些。菜德雷测定值证明了罗麦有关光速有限性的说法。 光速的测定,成了十七世纪以来所展开的关于光的本性的争论的重要依据。但是,由于受当时实验环境的局限,科学家们只能以天文方法测定光在真空中的传播速度,还不能解决光受传播介质影响的问题,所以关于这一问题的争论始终悬而未决。 十八世纪,科学界是沉闷的,光学的发展几乎处于停滞的状态。继布莱德雷之后,经过一个多世纪的酝酿,到了十九世纪中期,才出现了新的科学家和新的方法来测量光速。 1849年,法国人菲索 (A.H.L.Fizeau,1819-1896) 第一次在地面上设计实验装置来测定光速。他的方法原理与伽利略的相类似。他将一个点光源放在透镜的焦点处,在透镜与光源之间放一个齿轮,在透镜的另一测较远处依次放置另一个透镜和一个平面镜,平面镜位于第二个透镜的焦点处。点光源发出的光经过齿轮和透镜后变成平行光,平行光经过第二个透镜后又在平面镜上聚于一点,在平面镜上反射后按原路返回。由于齿轮有齿隙和齿,当光通过齿隙时观察者就可以看到返回的光,当光恰好遇到齿时就会被遮住。从开始到返回的光第一次消失的时间就是光往返一次所用的时间,根据齿轮的转速,这个时间不难求出。通过这种方法,菲索测得的光速是315000千米/秒。由于齿轮有一定的宽度,用这种方法很难精确的测出光速。 1850年,法国物理学家傅科 (Foucault) 改进了菲索的方法,他只用一个透镜、一面旋转的平面镜和一个凹面镜。平行光通过旋转的平面镜汇聚到凹面镜的圆心上,同样用平面镜的转速可以求出时间。傅科用这种方法测出的光速是298000 千米/秒。另外傅科还测出了光在水中的传播速度,通过与光在空气中传播速度的比较,他测出了光由空气中射入水中的折射率。这个实验在微粒说已被波动说推翻之后,又一次对微粒说做出了判决,给光的微粒理论带了最后的冲击。 1928年,卡娄拉斯和米太斯塔德首先提出利用克尔盒法来测定光速。1951年,贝奇斯传德用这种方法测出的光速是299793千米/秒。 光波是电磁波谱中的一小部分,当代人们对电磁波谱中的每一种电磁波都进行了精密的测量。1950年,艾森 (H.L.Anderson,1913-) 提出了用空腔共振法来测量光速。这种方法的原理是,微波通过空腔时当它的频率为某一值时发生共振。根据空腔的长度可以求出共振腔的波长,在把共振腔的波长换算成光在真空中的波长,由波长和频率可计算出光速。 当代计算出的最精确的光速都是通过波长和频率求得的。1958年,弗鲁姆求出光速的精确值:2997925±01千米/秒。1972年,埃文森测得了目前真空中光速的最佳数值:2997924574±01米/秒。 光速的测定在光学的研究历程中有着重要的意义。虽然从人们设法测量光速到人们测量出较为精确的光速共经历了三百多年的时间,但在这期间每一点进步都促进了几何光学和物理光学的发展,尤其是在微粒说与波动说的争论中,光速的测定曾给这一场著名的科学争辩提供了非常重要的依据。 1 利用相位移法测量空气中的光速 2利用恒星光行差-(Bradley
1728) 3利用旋转齿轮法-(Fizeau
1849) 4 1862年J L Foucault用旋转镜法测空气中的光速,原理和旋转齿轮法相同 5 1874年M A Cornu改进Fizeau的旋转齿轮法
在地面上测到光速 6 1879年A A Michelson改进Foucault的旋转镜法
并且综合了旋转镜法和旋转齿轮法的特点,发展"旋转棱镜法"测得更精确的光速 7 利用克尔盒 8 利用谐振腔 9 利用光电测距仪 10 或利用运用稳频雷射 可降低光速测量的不确定度
参考: knowledgeyahoo/question/qid=7006071703907+自己
Yes Light travels faster in vacuum than in air (Cf: sound travels faster in water than air) BUT the difference is VERY minute 2006-12-24 17:57:28 补充: Through any trparent or trlucent material medium
like glass or air
it has a lower speed than in a vacuum; the ratio of c to this slower speed is called the refractive index of the medium en /wiki/Speed_of_light
按人类目前最快的飞行器飞行一光年要42857年,具体分析如下:
飞行器是在大气层内或大气层外空间(太空)飞行的器械。飞行器分为3类:航空器、航天器、火箭和导d。在大气层内飞行的称为航空器,如气球、飞艇、飞机等。它们靠空气的静浮力或空气相对运动产生的空气动力升空飞行;
在太空飞行的称为航天器,如人造地球卫星、载人飞船、空间探测器、航天飞机等。它们在运载火箭的推动下获得必要的速度进入太空,然后依靠惯性做与天体类似的轨道运动;
目前人类最快的飞行器是1970年代中期发射的太阳神I和II探测器,创下速度记录为每小时252792公里,等于每秒7022公里。如果要走20光年的距离,需要85714年;
所以走一光年的距离需要的时间为:85714/20=42857年;
也就是说,按人类目前最快的飞行器飞行一光年要42857年。
扩展资料:
飞行器的发展:
现代飞行器的发展,得益于19世纪工业革命带来的科学和技术的巨大飞跃。19世纪,不断有人试图突破空气的束缚,但都失败了。随着内燃机的发明和广泛应用,在空气中的飞行也逐渐成为可能;
1903年,美国的莱特兄弟率先在美国制造出能够飞行的飞机,并且实现了飞行的梦想。随后,飞机及其相关的科学和技术,得到了飞速发展。
参考资料来源:百度百科-飞行器
一平方厘米等于0000001立方米=10^(-6)立方米
物理量 单位 公式
名称 符号 名称 符号
质量 m 千克 kg m=pv
温度 t 摄氏度 °C
速度 v 米/秒 m/s v=s/t
密度 p 千克/米³ kg/m³ p=m/v
力(重力) F 牛顿(牛) N G=mg
压强 P 帕斯卡(帕) Pa P=F/S
功 W 焦耳(焦) J W=Fs
功率 P 瓦特(瓦) w P=W/t
电流 I 安培(安) A I=U/R
电压 U 伏特(伏) V U=IR
电阻 R 欧姆(欧) R=U/I
电功 W 焦耳(焦) J W=UIt
电功率 P 瓦特(瓦) w P=W/t=UI
热量 Q 焦耳(焦) J Q=cm(t-t°)
比热 c 焦/(千克°C) J/(kg°C)
真空中光速 3×108米/秒
g 98牛顿/千克
15°C空气中声速 340米/秒
安全电压 不高于36伏
初中物理基本概念概要
一、测量
⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。
⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。
⒊质量m:物体中所含物质的多少叫质量。主单位:千克; 测量工具:秤;实验室用托盘天平。
二、机械运动
⒈机械运动:物体位置发生变化的运动。
参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。
⒉匀速直线运动:
①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。b 比较通过相等路程所需的时间。
②公式: 1米/秒=36千米/时。
三、力
⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。
力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用d簧秤。
力的作用效果:使物体发生形变或使物体的运动状态发生改变。
物体运动状态改变是指物体的速度大小或运动方向改变。
⒉力的三要素:力的大小、方向、作用点叫做力的三要素。
力的图示,要作标度;力的示意图,不作标度。
⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。
重力和质量关系:G=mg m=G/g
g=98牛/千克。读法:98牛每千克,表示质量为1千克物体所受重力为98牛。
重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。
⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。
物体在二力平衡下,可以静止,也可以作匀速直线运动。
物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。
⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;
方向相反:合力F=F1-F2,合力方向与大的力方向相同。
⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。
滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。滑动摩擦、滚动摩擦、静摩擦
7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。
四、密度
⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。
公式: m=ρV 国际单位:千克/米3 ,常用单位:克/厘米3,
关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;
读法:103千克每立方米,表示1立方米水的质量为103千克。
⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。
面积单位换算:
1厘米2=1×10-4米2,
1毫米2=1×10-6米2。
五、压强
⒈压强P:物体单位面积上受到的压力叫做压强。
压力F:垂直作用在物体表面上的力,单位:牛(N)。
压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。
压强单位:牛/米2;专门名称:帕斯卡(Pa)
公式: F=PS S:受力面积,两物体接触的公共部分;单位:米2。
改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。
⒉液体内部压强:测量液体内部压强:使用液体压强计(U型管压强计)。
产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。
规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。 [深度h,液面到液体某点的竖直高度。]
公式:P=ρgh h:单位:米; ρ:千克/米3; g=98牛/千克。
⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家)。托里拆利管倾斜后,水银柱高度不变,长度变长。
1个标准大气压=76厘米水银柱高=101×105帕=10336米水柱高
测定大气压的仪器:气压计(水银气压计、盒式气压计)。
大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低。
六、浮力
1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。方向:竖直向上;原因:液体对物体的上、下压力差。
2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。
即F浮=G液排=ρ液gV排。 (V排表示物体排开液体的体积)
3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差
4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液
当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮<G物 且 ρ物>ρ液
七、简单机械
⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离
通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。
定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。
动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。
⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS 功的单位:焦耳
3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。
W=Pt P的单位:瓦特; W的单位:焦耳; t的单位:秒。
八、光
⒈光的直线传播:光在同一种均匀介质中是沿直线传播的。小孔成像、影子、光斑是光的直线传播现象。
光在真空中的速度最大为3×108米/秒=3×105千米/秒
⒉光的反射定律:一面二侧三等大。入射光线和法线间的夹角是入射角。反射光线和法线间夹角是反射角。
平面镜成像特点:虚像,等大,等距离,与镜面对称。物体在水中倒影是虚像属光的反射现象。
⒊光的折射现象和规律: 看到水中筷子、鱼的虚像是光的折射现象。
凸透镜对光有会聚光线作用,凹透镜对光有发散光线作用。 光的折射定律:一面二侧三随大四空大。
⒋凸透镜成像规律:[U=f时不成像 U=2f时 V=2f成倒立等大的实像]
物距u 像距v 像的性质 光路图 应用
u>2f f<v<2f 倒缩小实 照相机
f<u<2f v>2f 倒放大实 幻灯机
u<f 放大正虚 放大镜
⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。
九、热学:
⒈温度t:表示物体的冷热程度。是一个状态量。
常用温度计原理:根据液体热胀冷缩性质。
温度计与体温计的不同点:①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法。
⒉热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少。是过程量
热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。
⒊汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。
影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。
⒋比热容C:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。
比热容是物质的特性之一,单位:焦/(千克℃) 常见物质中水的比热容最大。
C水=42×103焦/(千克℃) 读法:42×103焦耳每千克摄氏度。
物理含义:表示质量为1千克水温度升高1℃吸收热量为42×103焦。
⒌热量计算:Q放=cm⊿t降 Q吸=cm⊿t升
Q与c、m、⊿t成正比,c、m、⊿t之间成反比。⊿t=Q/cm
6.内能:物体内所有分子的动能和分子势能的总和。一切物体都有内能。内能单位:焦耳
物体的内能与物体的温度有关。物体温度升高,内能增大;温度降低内能减小。
改变物体内能的方法:做功和热传递(对改变物体内能是等效的)
7.能的转化和守恒定律:能量即不会凭空产生,也不会凭空消失,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而能的总量保持不变。
十、电路
⒈电路由电源、电键、用电器、导线等元件组成。要使电路中有持续电流,电路中必须有电源,且电路应闭合的。 电路有通路、断路(开路)、电源和用电器短路等现象。
⒉容易导电的物质叫导体。如金属、酸、碱、盐的水溶液。不容易导电的物质叫绝缘体。如木头、玻璃等。
绝缘体在一定条件下可以转化为导体。
⒊串、并联电路的识别:串联:电流不分叉,并联:电流有分叉。
把非标准电路图转化为标准的电路图的方法:采用电流流径法。
十一、电流定律
⒈电量Q:电荷的多少叫电量,单位:库仑。
电流I:1秒钟内通过导体横截面的电量叫做电流强度。 Q=It
电流单位:安培(A) 1安培=1000毫安 正电荷定向移动的方向规定为电流方向。
测量电流用电流表,串联在电路中,并考虑量程适合。不允许把电流表直接接在电源两端。
⒉电压U:使电路中的自由电荷作定向移动形成电流的原因。电压单位:伏特(V)。
测量电压用电压表(伏特表),并联在电路(用电器、电源)两端,并考虑量程适合。
⒊电阻R:导电物体对电流的阻碍作用。符号:R,单位:欧姆、千欧、兆欧。
电阻大小跟导线长度成正比,横截面积成反比,还与材料有关。
导体电阻不同,串联在电路中时,电流相同(1∶1)。 导体电阻不同,并联在电路中时,电压相同(1:1)
⒋欧姆定律:公式:I=U/R U=IR R=U/I
导体中的电流强度跟导体两端电压成正比,跟导体的电阻成反比。
导体电阻R=U/I。对一确定的导体若电压变化、电流也发生变化,但电阻值不变。
⒌串联电路特点:
① I=I1=I2 ② U=U1+U2 ③ R=R1+R2 ④ U1/R1=U2/R2
电阻不同的两导体串联后,电阻较大的两端电压较大,两端电压较小的导体电阻较小。
例题:一只标有“6V、3W”电灯,接到标有8伏电路中,如何联接一个多大电阻,才能使小灯泡正常发光?
解:由于P=3瓦,U=6伏
∴I=P/U=3瓦/6伏=05安
由于总电压8伏大于电灯额定电压6伏,应串联一只电阻R2 如右图,
因此U2=U-U1=8伏-6伏=2伏
∴R2=U2/I=2伏/05安=4欧。答:(略)
⒍并联电路特点:
①U=U1=U2 ②I=I1+I2 ③1/R=1/R1+1/R2 或 ④I1R1=I2R2
电阻不同的两导体并联:电阻较大的通过的电流较小,通过电流较大的导体电阻小。
例:如图R2=6欧,K断开时安培表的示数为04安,K闭合时,A表示数为12安。求:①R1阻值 ②电源电压 ③总电阻
已知:I=12安 I1=04安 R2=6欧
求:R1;U;R
解:∵R1、R2并联
∴I2=I-I1=12安-04安=08安
根据欧姆定律U2=I2R2=08安×6欧=48伏
又∵R1、R2并联 ∴U=U1=U2=48伏
∴R1=U1/I1=48伏/04安=12欧
∴R=U/I=48伏/12安=4欧 (或利用公式 计算总电阻) 答:(略)
十二、电能
⒈电功W:电流所做的功叫电功。电流作功过程就是电能转化为其它形式的能。
公式:W=UQ W=UIt=U2t/R=I2Rt W=Pt 单位:W焦 U伏特 I安培 t秒 Q库 P瓦特
⒉电功率P:电流在单位时间内所作的电功,表示电流作功的快慢。电功率大的用电器电流作功快。
公式:P=W/t P=UI (P=U2/R P=I2R) 单位:W焦 U伏特 I安培 t秒 Q库 P瓦特
⒊电能表(瓦时计):测量用电器消耗电能的仪表。1度电=1千瓦时=1000瓦×3600秒=36×106焦耳
例:1度电可使二只“220V、40W”电灯工作几小时?
解 t=W/P=1千瓦时/(2×40瓦)=1000瓦时/80瓦=125小时
十三、磁
1.磁体、磁极同名磁极互相排斥,异名磁极互相吸引
物体能够吸引铁、钴、镍等物质的性质叫磁性。具有磁性的物质叫磁体。磁体的磁极总是成对出现的。
2.磁场:磁体周围空间存在着一个对其它磁体发生作用的区域。
磁场的基本性质是对放入其中的磁体产生磁力的作用。
磁场方向:小磁针静止时N极所指的方向就是该点的磁场方向。磁体周围磁场用磁感线来表示。
地磁北极在地理南极附近,地磁南极在地理北极附近。
3.电流的磁场:奥斯特实验表明电流周围存在磁场。
通电螺线管对外相当于一个条形磁铁。
通电螺线管中电流的方向与螺线管两端极性的关系可以用右手螺旋定则来判定。
参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。
⒉匀速直线运动:
①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。b 比较通过相等路程所需的时间。
②公式: 1米/秒=36千米/时。
三、力
⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。
力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用d簧秤。
力的作用效果:使物体发生形变或使物体的运动状态发生改变。
物体运动状态改变是指物体的速度大小或运动方向改变。
⒉力的三要素:力的大小、方向、作用点叫做力的三要素。
力的图示,要作标度;力的示意图,不作标度。
⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。
重力和质量关系:G=mg m=G/g
g=98牛/千克。读法:98牛每千克,表示质量为1千克物体所受重力为98牛。
重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。
⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。
物体在二力平衡下,可以静止,也可以作匀速直线运动。
物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。
⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;
方向相反:合力F=F1-F2,合力方向与大的力方向相同。
⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。
滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。滑动摩擦、滚动摩擦、静摩擦
7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。
四、密度
⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。
公式: m=ρV 国际单位:千克/米3 ,常用单位:克/厘米3,
关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;
读法:103千克每立方米,表示1立方米水的质量为103千克。
⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。
面积单位换算:
1厘米2=1×10-4米2,
1毫米2=1×10-6米2。
五、压强
⒈压强P:物体单位面积上受到的压力叫做压强。
压力F:垂直作用在物体表面上的力,单位:牛(N)。
压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。
压强单位:牛/米2;专门名称:帕斯卡(Pa)
公式: F=PS S:受力面积,两物体接触的公共部分;单位:米2。
改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。
⒉液体内部压强:测量液体内部压强:使用液体压强计(U型管压强计)。
产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。
规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。 [深度h,液面到液体某点的竖直高度。]
公式:P=ρgh h:单位:米; ρ:千克/米3; g=98牛/千克。
⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家)。托里拆利管倾斜后,水银柱高度不变,长度变长。
1个标准大气压=76厘米水银柱高=101×105帕=10336米水柱高
测定大气压的仪器:气压计(水银气压计、盒式气压计)。
大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低。
六、浮力
1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。方向:竖直向上;原因:液体对物体的上、下压力差。
2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。
即F浮=G液排=ρ液gV排。 (V排表示物体排开液体的体积)
3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差
4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液
当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮<G物 且 ρ物>ρ液
七、简单机械
⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离
通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。
定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。
动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。
⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS 功的单位:焦耳
3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。
W=Pt P的单位:瓦特; W的单位:焦耳; t的单位:秒。
八、光
⒈光的直线传播:光在同一种均匀介质中是沿直线传播的。小孔成像、影子、光斑是光的直线传播现象。
光在真空中的速度最大为3×108米/秒=3×105千米/秒
⒉光的反射定律:一面二侧三等大。入射光线和法线间的夹角是入射角。反射光线和法线间夹角是反射角。
平面镜成像特点:虚像,等大,等距离,与镜面对称。物体在水中倒影是虚像属光的反射现象。
⒊光的折射现象和规律: 看到水中筷子、鱼的虚像是光的折射现象。
凸透镜对光有会聚光线作用,凹透镜对光有发散光线作用。 光的折射定律:一面二侧三随大四空大。
⒋凸透镜成像规律:[U=f时不成像 U=2f时 V=2f成倒立等大的实像]
物距u 像距v 像的性质 光路图 应用
u>2f f<v<2f 倒缩小实 照相机
f<u<2f v>2f 倒放大实 幻灯机
u<f 放大正虚 放大镜
⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。
九、热学:
⒈温度t:表示物体的冷热程度。是一个状态量。
常用温度计原理:根据液体热胀冷缩性质。
温度计与体温计的不同点:①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法。
⒉热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少。是过程量
热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。
⒊汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。
影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。
⒋比热容C:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。
比热容是物质的特性之一,单位:焦/(千克℃) 常见物质中水的比热容最大。
C水=42×103焦/(千克℃) 读法:42×103焦耳每千克摄氏度。
物理含义:表示质量为1千克水温度升高1℃吸收热量为42×103焦。
⒌热量计算:Q放=cm⊿t降 Q吸=cm⊿t升
Q与c、m、⊿t成正比,c、m、⊿t之间成反比。⊿t=Q/cm
6.内能:物体内所有分子的动能和分子势能的总和。一切物体都有内能。内能单位:焦耳
物体的内能与物体的温度有关。物体温度升高,内能增大;温度降低内能减小。
改变物体内能的方法:做功和热传递(对改变物体内能是等效的)
7.能的转化和守恒定律:能量即不会凭空产生,也不会凭空消失,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而能的总量保持不变。
十、电路
⒈电路由电源、电键、用电器、导线等元件组成。要使电路中有持续电流,电路中必须有电源,且电路应闭合的。 电路有通路、断路(开路)、电源和用电器短路等现象。
⒉容易导电的物质叫导体。如金属、酸、碱、盐的水溶液。不容易导电的物质叫绝缘体。如木头、玻璃等。
绝缘体在一定条件下可以转化为导体。
⒊串、并联电路的识别:串联:电流不分叉,并联:电流有分叉。
把非标准电路图转化为标准的电路图的方法:采用电流流径法。
十一、电流定律
⒈电量Q:电荷的多少叫电量,单位:库仑。
电流I:1秒钟内通过导体横截面的电量叫做电流强度。 Q=It
电流单位:安培(A) 1安培=1000毫安 正电荷定向移动的方向规定为电流方向。
测量电流用电流表,串联在电路中,并考虑量程适合。不允许把电流表直接接在电源两端。
⒉电压U:使电路中的自由电荷作定向移动形成电流的原因。电压单位:伏特(V)。
测量电压用电压表(伏特表),并联在电路(用电器、电源)两端,并考虑量程适合。
⒊电阻R:导电物体对电流的阻碍作用。符号:R,单位:欧姆、千欧、兆欧。
电阻大小跟导线长度成正比,横截面积成反比,还与材料有关。
导体电阻不同,串联在电路中时,电流相同(1∶1)。 导体电阻不同,并联在电路中时,电压相同(1:1)
⒋欧姆定律:公式:I=U/R U=IR R=U/I
导体中的电流强度跟导体两端电压成正比,跟导体的电阻成反比。
导体电阻R=U/I。对一确定的导体若电压变化、电流也发生变化,但电阻值不变。
⒌串联电路特点:
① I=I1=I2 ② U=U1+U2 ③ R=R1+R2 ④ U1/R1=U2/R2
电阻不同的两导体串联后,电阻较大的两端电压较大,两端电压较小的导体电阻较小。
例题:一只标有“6V、3W”电灯,接到标有8伏电路中,如何联接一个多大电阻,才能使小灯泡正常发光?
解:由于P=3瓦,U=6伏
∴I=P/U=3瓦/6伏=05安
由于总电压8伏大于电灯额定电压6伏,应串联一只电阻R2 如右图,
因此U2=U-U1=8伏-6伏=2伏
∴R2=U2/I=2伏/05安=4欧。答:(略)
⒍并联电路特点:
①U=U1=U2 ②I=I1+I2 ③1/R=1/R1+1/R2 或 ④I1R1=I2R2
郁闷,是这样么
以上就是关于光速如何不变全部的内容,包括:光速如何不变、在特殊介质中的低速光,其速度会否随参照系而变、狭义相对论,光速不变,那么声速呢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)