Informer代码详解

Informer代码详解,第1张

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

注:大家觉得博客好的话,别忘了点赞收藏呀~
论文:https://arxiv.org/abs/2012.07436
代码:https://github.com/zhouhaoyi/Informer2020
本文参考:https://zhuanlan.zhihu.com/p/374936725

1 数据集


该数据集每条记录由8个特征组成,每个特征会经过conv1d变为512维向量。如果进行多变量预测任务,则预测为后7列变量的值,如果进行的是单变量预测任务,则预测最后一列变量的值。

将date列的内容编码为时间戳,主要是通过utils中的timeFeatures.py文件实现,主要是进行以下的转换(以freq='h’为例),转化后的4维变量每一维分别代表【月份、日期、星期、小时】:

转换前转换后
2016-07-01 00:00:00[ 7, 1, 4, 0]
2016-07-01 00:15:00[ 7, 1, 4, 1]
2017-06-25 23:00:00[ 6,25, 6,23]
2 Embedding

如图所示,数据的embedding由三个部分组成

  • Scalar是采用conv1d将1维转换为512维向量
  • Local TIme Stamp采用Transformer中的Positional Emebdding
  • Gloabal Time Stamp 则是上述处理后的时间戳经过Eemdding
    最后,使用三者相加得到最后的输入(shape:[batch_size,seq_len,d_model)
1.Projection

对输入的原始数据进行一个1维卷积得到,将输入数据从Cin=7维映射为d_model=512维。

class TokenEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(TokenEmbedding, self).__init__()
        padding = 1 if torch.__version__>='1.5.0' else 2
        self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, 
                                    kernel_size=3, padding=padding, padding_mode='circular')
        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                nn.init.kaiming_normal_(m.weight,mode='fan_in',nonlinearity='leaky_relu')

    def forward(self, x):
        x = self.tokenConv(x.permute(0, 2, 1)).transpose(1,2)
        return x
2.Position Embedding

和Transformer中的位置编码一样,公式如下
P E ( p o s , 2 i ) = s i n ( p o s / 1000 0 2 i / d m o d e l ) PE_{(pos,2i)} = sin(pos/10000^{2i/dmodel} ) PE(pos,2i)=sin(pos/100002i/dmodel)
P E ( p o s , 2 i + 1 ) = c o s ( p o s / 1000 0 2 i / d m o d e l ) PE_{(pos,2i+1)} = cos(pos/10000^{2i/dmodel} ) PE(pos,2i+1)=cos(pos/100002i/dmodel)

class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return self.pe[:, :x.size(1)]
3.时间戳编码

对时间戳的编码主要分为TemporalEmbeddingTimeFeatureEmbedding这两种方式,前者使用month_embed、day_embed、weekday_embed、hour_embed和minute_embed(可选)多个embedding层处理输入的时间戳,将结果相加;后者直接使用一个全连接层将输入的时间戳映射到512维的embedding。

TemporalEmbedding中的embedding即可以使用像Position Embedding中的绝对位置编码(embed_type=='fixed'),也可以使用nn.Embedding让网络训练

class FixedEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(FixedEmbedding, self).__init__()

        w = torch.zeros(c_in, d_model).float()
        w.require_grad = False

        position = torch.arange(0, c_in).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        w[:, 0::2] = torch.sin(position * div_term)
        w[:, 1::2] = torch.cos(position * div_term)

        self.emb = nn.Embedding(c_in, d_model)
        self.emb.weight = nn.Parameter(w, requires_grad=False)

    def forward(self, x):
        return self.emb(x).detach()

class TemporalEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='fixed', freq='h'):
        super(TemporalEmbedding, self).__init__()

        minute_size = 4; hour_size = 24
        weekday_size = 7; day_size = 32; month_size = 13

        Embed = FixedEmbedding if embed_type=='fixed' else nn.Embedding
        if freq=='t':
            self.minute_embed = Embed(minute_size, d_model)
        self.hour_embed = Embed(hour_size, d_model)
        self.weekday_embed = Embed(weekday_size, d_model)
        self.day_embed = Embed(day_size, d_model)
        self.month_embed = Embed(month_size, d_model)
    
    def forward(self, x):
        x = x.long()
        
        minute_x = self.minute_embed(x[:,:,4]) if hasattr(self, 'minute_embed') else 0.
        hour_x = self.hour_embed(x[:,:,3])
        weekday_x = self.weekday_embed(x[:,:,2])
        day_x = self.day_embed(x[:,:,1])
        month_x = self.month_embed(x[:,:,0])
        
        return hour_x + weekday_x + day_x + month_x + minute_x

class TimeFeatureEmbedding(nn.Module):
    def __init__(self, d_model, embed_type='timeF', freq='h'):
        super(TimeFeatureEmbedding, self).__init__()

        freq_map = {'h':4, 't':5, 's':6, 'm':1, 'a':1, 'w':2, 'd':3, 'b':3}
        d_inp = freq_map[freq]
        self.embed = nn.Linear(d_inp, d_model)
    
    def forward(self, x):
        return self.embed(x)

最后,使用三者求和得到最终的输入

class DataEmbedding(nn.Module):
    def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1):
        super(DataEmbedding, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)
        self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) if embed_type!='timeF' else TimeFeatureEmbedding(d_model=d_model, embed_type=embed_type, freq=freq)

        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, x_mark):
        x = self.value_embedding(x) + self.position_embedding(x) + self.temporal_embedding(x_mark)
        
        return self.dropout(x)
Model

模型整体仿照Transformer,由Encoder和Decoder组成

Encoder

Informer contains a 3-layer stack and a 1- layer stack (1/4 input) in the encoder

Attn

使用了两种attention,一种是普通的多头自注意力层(FullAttention),一种是Informer新提出来的ProbSparse self-attention层(ProbAttention)。

import torch
import torch.nn as nn
import torch.nn.functional as F

import numpy as np

from math import sqrt
from utils.masking import TriangularCausalMask, ProbMask

class FullAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(FullAttention, self).__init__()
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def forward(self, queries, keys, values, attn_mask):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        scale = self.scale or 1./sqrt(E)

        scores = torch.einsum("blhe,bshe->bhls", queries, keys)
        if self.mask_flag:
            if attn_mask is None:
                attn_mask = TriangularCausalMask(B, L, device=queries.device)

            scores.masked_fill_(attn_mask.mask, -np.inf)

        A = self.dropout(torch.softmax(scale * scores, dim=-1))
        V = torch.einsum("bhls,bshd->blhd", A, values)
        
        if self.output_attention:
            return (V.contiguous(), A)
        else:
            return (V.contiguous(), None)

Informer模型中提出了一种新的注意力层——ProbSparse Self-Attention。

Q,K,V为输入的embedding分别乘上一个权重矩阵得到的query、key、value。ProbSparse Self-Attention首先对K进行采样,得到K_sample,对每个 q i ∈ Q q_{i}\in Q qiQ关于K_sample求M值

找到M值最大的u个 q i q_{i} qi ,对这Top-u个 q i q_{i} qi关于K求score值:
A ( Q , K , V ) = S o f t m a x ( Q ‾ K ⊤ d ) V A(Q,K,V) = Softmax(\frac{\overline{Q} \mathbf{K}^\top}{\sqrt{d}}) V A(Q,K,V)=Softmax(d QK)V

其中 Q ‾ \overline{Q} Q是Top-u的 q i q_{i} qi组成的矩阵,这样就得到了 S 1 S_{1} S1,对于没有被选中的那些 q i q_{i} qi的score值取mean(V)。

_get_initial_context()函数中,先将S所有行都置成mean(V),_update_context()函数将那些Top-u中的行的scoreh值更新为 S o f t m a x ( Q ‾ K ⊤ d ) V Softmax(\frac{\overline{Q} \mathbf{K}^\top}{\sqrt{d}}) V Softmax(d QK)V

class ProbAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(ProbAttention, self).__init__()
        self.factor = factor
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def _prob_QK(self, Q, K, sample_k, n_top): # n_top: c*ln(L_q)
        # Q [B, H, L, D]
        B, H, L_K, E = K.shape
        _, _, L_Q, _ = Q.shape

        # calculate the sampled Q_K
        K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E)
        index_sample = torch.randint(L_K, (L_Q, sample_k)) # real U = U_part(factor*ln(L_k))*L_q
        K_sample = K_expand[:, :, torch.arange(L_Q).unsqueeze(1), index_sample, :]
        Q_K_sample = torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze()

        # find the Top_k query with sparisty measurement
        M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K)
        M_top = M.topk(n_top, sorted=False)[1]

        # use the reduced Q to calculate Q_K
        Q_reduce = Q[torch.arange(B)[:, None, None],
                     torch.arange(H)[None, :, None],
                     M_top, :] # factor*ln
        Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1)) # factor*ln(L_q)*L_k

        return Q_K, M_top

    def _get_initial_context(self, V, L_Q):
        B, H, L_V, D = V.shape
        if not self.mask_flag:
            # V_sum = V.sum(dim=-2)
            V_sum = V.mean(dim=-2)
            contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone()
        else: # use mask
            assert(L_Q == L_V) # requires that L_Q == L_V, i.e. for self-attention only
            contex = V.cumsum(dim=-2)
        return contex

    def _update_context(self, context_in, V, scores, index, L_Q, attn_mask):
        B, H, L_V, D = V.shape

        if self.mask_flag:
            attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device)
            scores.masked_fill_(attn_mask.mask, -np.inf)

        attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)

        context_in[torch.arange(B)[:, None, None],
                   torch.arange(H)[None, :, None],
                   index, :] = torch.matmul(attn, V).type_as(context_in)
        if self.output_attention:
            attns = (torch.ones([B, H, L_V, L_V])/L_V).type_as(attn).to(attn.device)
            attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn
            return (context_in, attns)
        else:
            return (context_in, None)

    def forward(self, queries, keys, values, attn_mask):
        B, L_Q, H, D = queries.shape
        _, L_K, _, _ = keys.shape

        queries = queries.transpose(2,1)
        keys = keys.transpose(2,1)
        values = values.transpose(2,1)

        U_part = self.factor * np.ceil(np.log(L_K)).astype('int').item() # c*ln(L_k)
        u = self.factor * np.ceil(np.log(L_Q)).astype('int').item() # c*ln(L_q) 

        U_part = U_part if U_part<L_K else L_K
        u = u if u<L_Q else L_Q
        
        scores_top, index = self._prob_QK(queries, keys, sample_k=U_part, n_top=u) 

        # add scale factor
        scale = self.scale or 1./sqrt(D)
        if scale is not None:
            scores_top = scores_top * scale
        # get the context
        context = self._get_initial_context(values, L_Q)
        # update the context with selected top_k queries
        context, attn = self._update_context(context, values, scores_top, index, L_Q, attn_mask)
        
        return context.contiguous(), attn

AttentionLayer是定义的attention层,会先将输入的embedding分别通过线性映射得到query、key、value。还将输入维度 d m o d e l d_{model} dmodel 划分为多头,接着就执行前面定义的attention *** 作,最后经过一个线性映射得到输出。

class AttentionLayer(nn.Module):
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None):
        super(AttentionLayer, self).__init__()

        d_keys = d_keys or (d_model//n_heads)
        d_values = d_values or (d_model//n_heads)

        self.inner_attention = attention
        self.query_projection = nn.Linear(d_model, d_keys * n_heads)
        self.key_projection = nn.Linear(d_model, d_keys * n_heads)
        self.value_projection = nn.Linear(d_model, d_values * n_heads)
        self.out_projection = nn.Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads

    def forward(self, queries, keys, values, attn_mask):
        B, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads

        queries = self.query_projection(queries).view(B, L, H, -1)
        keys = self.key_projection(keys).view(B, S, H, -1)
        values = self.value_projection(values).view(B, S, H, -1)

        out, attn = self.inner_attention(
            queries,
            keys,
            values,
            attn_mask
        )
        out = out.view(B, L, -1)

        return self.out_projection(out), attn
4. Convlayer

ConvLayer类实现的是Informer中的Distilling *** 作,本质上就是一个1维卷积+ELU激活函数+最大池化。公式如下:

这个 *** 作使得对每个seq_len长度的数据在其长度维度上减半,即distill *** 作

import torch
import torch.nn as nn
import torch.nn.functional as F

class ConvLayer(nn.Module):
    def __init__(self, c_in):
        super(ConvLayer, self).__init__()
        self.downConv = nn.Conv1d(in_channels=c_in,
                                  out_channels=c_in,
                                  kernel_size=3,
                                  padding=2,
                                  padding_mode='circular')
        self.norm = nn.BatchNorm1d(c_in)
        self.activation = nn.ELU()
        self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)

    def forward(self, x):
        x = self.downConv(x.permute(0, 2, 1))
        x = self.norm(x)
        x = self.activation(x)
        x = self.maxPool(x)
        x = x.transpose(1,2)
        return x
EncoderLayer

EncoderLayer类实现的是一个Encoder层,整体架构和Transformer是大致相同的,主要包含两个子层:多头注意力层(Informer中改为提出的ProbSparse Self-Attention层)和两个线性映射组成的前馈层(Feed Forward),两个子层后都带有一个批量归一化层,子层之间有跳跃连接。

class EncoderLayer(nn.Module):
    def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
        super(EncoderLayer, self).__init__()
        d_ff = d_ff or 4*d_model
        self.attention = attention
        # 此处的conv1相当于nn.Linear()
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, attn_mask=None):
        # x [B, L, D]
        # x = x + self.dropout(self.attention(
        #     x, x, x,
        #     attn_mask = attn_mask
        # ))
        new_x, attn = self.attention(
            x, x, x,
            attn_mask = attn_mask
        )
        x = x + self.dropout(new_x)

        y = x = self.norm1(x)
        y = self.dropout(self.activation(self.conv1(y.transpose(-1,1))))
        y = self.dropout(self.conv2(y).transpose(-1,1))

        return self.norm2(x+y), attn

Encoder类是将前面定义的Encoder层和Distilling *** 作组织起来,形成一个Encoder模块。其中distilling层总比EncoderLayer少一层,即最后一层EncoderLayer后不再做distilling *** 作。

class Encoder(nn.Module):
    def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
        super(Encoder, self).__init__()
        self.attn_layers = nn.ModuleList(attn_layers)
        self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
        self.norm = norm_layer

    def forward(self, x, attn_mask=None):
        # x [B, L, D]
        attns = []
        if self.conv_layers is not None:
            for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
                x, attn = attn_layer(x, attn_mask=attn_mask)
                x = conv_layer(x)
                attns.append(attn)
            x, attn = self.attn_layers[-1](x)
            attns.append(attn)
        else:
            for attn_layer in self.attn_layers:
                x, attn = attn_layer(x, attn_mask=attn_mask)
                attns.append(attn)

        if self.norm is not None:
            x = self.norm(x)

        return x, attns

为了增强distilling *** 作的鲁棒性,文章中提到可以采用多个replicas并行执行,不同replicas采用不同长度的embedding(L、L/2、L/4、…),embedding长度减半对应的attention层也减少一层,distilling层也会随之减少一层,最终得到的结果拼接起来作为输出。

class EncoderStack(nn.Module):
    def __init__(self, encoders, inp_lens):
        super(EncoderStack, self).__init__()
        self.encoders = nn.ModuleList(encoders)
        self.inp_lens = inp_lens

    def forward(self, x, attn_mask=None):
        # x [B, L, D]
        x_stack = []; attns = []
        for i_len, encoder in zip(self.inp_lens, self.encoders):
            inp_len = x.shape[1]//(2**i_len)
            x_s, attn = encoder(x[:, -inp_len:, :])
            x_stack.append(x_s); attns.append(attn)
        x_stack = torch.cat(x_stack, -2)
        
        return x_stack, attns
Decoder

Decoder部分结构可以参考Transformer中的Decoder结构,包括两层attention层和一个两层线性映射的Feed Forward部分。

需要注意的是,第一个attention层中的query、key、value都是根据Decoder输入的embedding乘上权重矩阵得到的,而第二个attention层中的query是根据前面attention层的输出乘上权重矩阵得到的,key和value是根据Encoder的输出乘上权重矩阵得到的。

import torch
import torch.nn as nn
import torch.nn.functional as F

class DecoderLayer(nn.Module):
    def __init__(self, self_attention, cross_attention, d_model, d_ff=None,
                 dropout=0.1, activation="relu"):
        super(DecoderLayer, self).__init__()
        d_ff = d_ff or 4*d_model
        self.self_attention = self_attention
        self.cross_attention = cross_attention
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, cross, x_mask=None, cross_mask=None):
        x = x + self.dropout(self.self_attention(
            x, x, x,
            attn_mask=x_mask
        )[0])
        x = self.norm1(x)

        x = x + self.dropout(self.cross_attention(
            x, cross, cross,
            attn_mask=cross_mask
        )[0])

        y = x = self.norm2(x)
        y = self.dropout(self.activation(self.conv1(y.transpose(-1,1))))
        y = self.dropout(self.conv2(y).transpose(-1,1))

        return self.norm3(x+y)

class Decoder(nn.Module):
    def __init__(self, layers, norm_layer=None):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList(layers)
        self.norm = norm_layer

    def forward(self, x, cross, x_mask=None, cross_mask=None):
        for layer in self.layers:
            x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)

        if self.norm is not None:
            x = self.norm(x)

        return x
Model.py
import torch
import torch.nn as nn
import torch.nn.functional as F

from utils.masking import TriangularCausalMask, ProbMask
from models.encoder import Encoder, EncoderLayer, ConvLayer, EncoderStack
from models.decoder import Decoder, DecoderLayer
from models.attn import FullAttention, ProbAttention, AttentionLayer
from models.embed import DataEmbedding

class Informer(nn.Module):
    def __init__(self, enc_in, dec_in, c_out, seq_len, label_len, out_len,
                factor=5, d_model=512, n_heads=8, e_layers=3, d_layers=2, d_ff=512, 
                dropout=0.0, attn='prob', embed='fixed', freq='h', activation='gelu', 
                output_attention = False, distil=True,
                device=torch.device('cuda:0')):
        super(Informer, self).__init__()
        self.pred_len = out_len
        self.attn = attn
        self.output_attention = output_attention

        # Encoding
        self.enc_embedding = DataEmbedding(enc_in, d_model, embed, freq, dropout)
        self.dec_embedding = DataEmbedding(dec_in, d_model, embed, freq, dropout)
        # Attention
        Attn = ProbAttention if attn=='prob' else FullAttention
        # Encoder
        self.encoder = Encoder(
            [
                EncoderLayer(
                    AttentionLayer(Attn(False, factor, attention_dropout=dropout, output_attention=output_attention), 
                                d_model, n_heads),
                    d_model,
                    d_ff,
                    dropout=dropout,
                    activation=activation
                ) for l in range(e_layers)
            ],
            [
                ConvLayer(
                    d_model
                ) for l in range(e_layers-1)
            ] if distil else None,
            norm_layer=torch.nn.LayerNorm(d_model)
        )
        # Decoder
        self.decoder = Decoder(
            [
                DecoderLayer(
                    AttentionLayer(Attn(True, factor, attention_dropout=dropout, output_attention=False), 
                                d_model, n_heads),
                    AttentionLayer(FullAttention(False, factor, attention_dropout=dropout, output_attention=False), 
                                d_model, n_heads),
                    d_model,
                    d_ff,
                    dropout=dropout,
                    activation=activation,
                )
                for l in range(d_layers)
            ],
            norm_layer=torch.nn.LayerNorm(d_model)
        )
        # self.end_conv1 = nn.Conv1d(in_channels=label_len+out_len, out_channels=out_len, kernel_size=1, bias=True)
        # self.end_conv2 = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=1, bias=True)
        self.projection = nn.Linear(d_model, c_out, bias=True)
        
    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, 
                enc_self_mask=None, dec_self_mask=None, dec_enc_mask=None):
        enc_out = self.enc_embedding(x_enc, x_mark_enc)
        enc_out, attns = self.encoder(enc_out, attn_mask=enc_self_mask)

        dec_out = self.dec_embedding(x_dec, x_mark_dec)
        dec_out = self.decoder(dec_out, enc_out, x_mask=dec_self_mask, cross_mask=dec_enc_mask)
        dec_out = self.projection(dec_out)
        
        # dec_out = self.end_conv1(dec_out)
        # dec_out = self.end_conv2(dec_out.transpose(2,1)).transpose(1,2)
        if self.output_attention:
            return dec_out[:,-self.pred_len:,:], attns
        else:
            return dec_out[:,-self.pred_len:,:] # [B, L, D]

InformerStack是在Encoder部分使用多个replicas的模型。

class InformerStack(nn.Module):
    def __init__(self, enc_in, dec_in, c_out, seq_len, label_len, out_len, 
                factor=5, d_model=512, n_heads=8, e_layers=[3,2,1], d_layers=2, d_ff=512, 
                dropout=0.0, attn='prob', embed='fixed', freq='h', activation='gelu',
                output_attention = False, distil=True,
                device=torch.device('cuda:0')):
        super(InformerStack, self).__init__()
        self.pred_len = out_len
        self.attn = attn
        self.output_attention = output_attention

        # Encoding
        self.enc_embedding = DataEmbedding(enc_in, d_model, embed, freq, dropout)
        self.dec_embedding = DataEmbedding(dec_in, d_model, embed, freq, dropout)
        # Attention
        Attn = ProbAttention if attn=='prob' else FullAttention
        # Encoder

        inp_lens = list(range(len(e_layers))) # [0,1,2,...] you can customize here
        encoders = [
            Encoder(
                [
                    EncoderLayer(
                        AttentionLayer(Attn(False, factor, attention_dropout=dropout, output_attention=output_attention), 
                                    d_model, n_heads),
                        d_model,
                        d_ff,
                        dropout=dropout,
                        activation=activation
                    ) for l in range(el)
                ],
                [
                    ConvLayer(
                        d_model
                    ) for l in range(el-1)
                ] if distil else None,
                norm_layer=torch.nn.LayerNorm(d_model)
            ) for el in e_layers]
        self.encoder = EncoderStack(encoders, inp_lens)
        # Decoder
        self.decoder = Decoder(
            [
                DecoderLayer(
                    AttentionLayer(Attn(True, factor, attention_dropout=dropout, output_attention=False), 
                                d_model, n_heads),
                    AttentionLayer(FullAttention(False, factor, attention_dropout=dropout, output_attention=False), 
                                d_model, n_heads),
                    d_model,
                    d_ff,
                    dropout=dropout,
                    activation=activation,
                )
                for l in range(d_layers)
            ],
            norm_layer=torch.nn.LayerNorm(d_model)
        )
        # self.end_conv1 = nn.Conv1d(in_channels=label_len+out_len, out_channels=out_len, kernel_size=1, bias=True)
        # self.end_conv2 = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=1, bias=True)
        self.projection = nn.Linear(d_model, c_out, bias=True)
        
    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, 
                enc_self_mask=None, dec_self_mask=None, dec_enc_mask=None):
        enc_out = self.enc_embedding(x_enc, x_mark_enc)
        enc_out, attns = self.encoder(enc_out, attn_mask=enc_self_mask)

        dec_out = self.dec_embedding(x_dec, x_mark_dec)
        dec_out = self.decoder(dec_out, enc_out, x_mask=dec_self_mask, cross_mask=dec_enc_mask)
        dec_out = self.projection(dec_out)
        
        # dec_out = self.end_conv1(dec_out)
        # dec_out = self.end_conv2(dec_out.transpose(2,1)).transpose(1,2)
        if self.output_attention:
            return dec_out[:,-self.pred_len:,:], attns
        else:
            return dec_out[:,-self.pred_len:,:] # [B, L, D]
7. masking.py

mask机制用在Decoder的第一个attention层中,目的是为了保证t时刻解码的输出只依赖于t时刻之前的输出。

生成的mask矩阵右上角部分为1(不包括对角线),将mask矩阵作用到score矩阵上会使得mask矩阵中为1的位置在score矩阵中为 [公式] ,这样softmax后就为0。

TriangularCausalMask是用在Fullattention层上的,ProbMask是用在ProbSparseAttention层上的。

import torch

class TriangularCausalMask():
    def __init__(self, B, L, device="cpu"):
        mask_shape = [B, 1, L, L]
        with torch.no_grad():
            self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)

    @property
    def mask(self):
        return self._mask

class ProbMask():
    def __init__(self, B, H, L, index, scores, device="cpu"):
        _mask = torch.ones(L, scores.shape[-1], dtype=torch.bool).to(device).triu(1)
        _mask_ex = _mask[None, None, :].expand(B, H, L, scores.shape[-1])
        indicator = _mask_ex[torch.arange(B)[:, None, None],
                             torch.arange(H)[None, :, None],
                             index, :].to(device)
        self._mask = indicator.view(scores.shape).to(device)
    
    @property
    def mask(self):
        return self._mask

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/886210.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-14
下一篇 2022-05-14

发表评论

登录后才能评论

评论列表(0条)

保存