“大数据”时代到来了么
潮流是一股可笑又可敬的力量:今天,如果打开任何媒体,要是不提“大数据”,恐怕都不好意思出版。 这股潮流,铺天盖地,连国家***都不例外。 问题在于:为什么人人言必称大数据
数据的价值,随着数据量的几何级数增长,已经不再能够通过传统的图表得以显现,这正是为什么商业智能还没来得及流行,便已被“数据分析”挤下舞台。因为,价值隐藏在数据中,需要数据分析方可释放这些价值。数据分析能力的高低,决定了价值发现过程的好坏与成败。可以说,没有数据分析,“大数据”只是一堆IT库存,成本高而收益为零。但是国内热潮的“大数据”概念,目前仍然停留在数据收集、整理、存储和简单报表等几个初级阶段。能够对大数据进行基本分析和运用的,只有少数几个行业的少数企业。关于这一点,我们可以通过谷歌搜索结果来简单揭示这一现状的:
挑选四个关键词,并且分别搜索,并且对搜索结果计数用JMP数据分析软件进行制图:
很明显,英文世界里,“big data”的搜索结果计数比中文世界里的“大数据”搜索结果计数要多了不少; 而“analytics”(分析)的搜索量不仅仅高于“big data”,更是远远高于“分析”在中文世界里的搜索结果,大概是169倍!
这个结果,尽管不能100%还原中国业界对“大数据“和”分析“的重视程度,但仍然可以揭示一个起码的事实:作为大数据概念源头的西方国家尤其是美国业界对于”分析”的重视,远甚于中国业界对分析的关注。
这个来自谷歌搜索的简单分析结果,和我们对于中国企业大数据实施现状的理解不谋而合。
中国式大数据与分析的现状
所谓”大数据分析“,其和”小数据分析“的唯一差别在于数据量以及数据量带来的对于数据存储、查询及分析吞吐量的要求。本质上,”大数据分析“仍然需要通过数据分析来发现现状,找到导致现状的根源要素,并且通过模型与预测分析技术来对改善进行预测与优化,并且实现企业运营各个领域的持续改善与创新。要谈”大数据分析”的中国现状,首先必须深入了解”数据分析“在国内的应用情况。
国内企业,不论是国企还是民企,真正在业务决策中以数据分析结果为依据的,主要集中在银行,保险,电信和电商等几个行业。以IT预算最充沛,人员能力最强的银行为例,目前主要是大型银行在导入数据分析。中小银行尚在观望与学习阶段,人员与能力建设正在起步阶段。数据分析的应用范围主要集中在信用风险、流程优化、市场营销、成本与预算等几个方面,深度尚可,但广度一般,尚未扩充到运营管理的所有领域。
而谈到“大数据”或者数据仓库,上述行业中的绝大多数企业早已实施了各种数据仓库,以管理数据。这种买药再看病的模式,完全本末倒置。数据仓库与数据库不一样,其使命就是为了分析而存在的。没有分析,仓库何用之有 四大行之一的某大型国有银行,90年代末期就开始花费好几亿元IT预算,建设“数据大集中”项目,受该行影响,其他国内银行掀起了一股数据集中的热潮。而当时连商业智能还是个尚未传入中国IT概念,更遑论数据分析了。15年过去了,这些被集中的数据,还在么
至于支撑起我国庞大GDP的制造业、建筑业和贸易业,在运用数据分析进行业务决策方面,则尚未见规模。其IT开支仍然主要集中在基础架构与流程化的软件套件领域(如ERP,CRM,HRM, SCM等),部分企业开始导入商业智能(报表、制图、管理驾驶舱),而数据分析应用远远没有进入规模发展阶段。以我国制造业企业为例,从五、六年前开始热炒“六西格玛”、”全面质量管理“,”精益生产“,尽管这些举措对中国制造、中国创造等带来本质变化尚需时日,但是就提升企业决策能力和管理水平而言,这些举措的的确起到了一定的作用,对于中国企业从拍脑袋到用数据决策这一本质转变打下了一个基础。
这一现状的原因,我们认为主要提现在如下几个方面:
1 企业的权力来源
数据分析才是真正的一把手工程。分析的使命,在于改善决策。决策的第一责任人,也就是企业最高层管理人员。国企,尤其是大型央企,职业经理人体系并不完善,董事长、总经理级别的任命是由组织部门而不是经济部门来决定的。“讲政治”的人事任命体系决定了企业决策的复杂性和特殊性,科学管理方法和决策手段的推广,完全取决于企业最高***本身对于这些手段的认可程度。
另外,数据分析带来的不仅仅是分析软件和分析方法论,更需要决策、运营进行相应的改善与调整,我们通常称之为“变革”。 任何变革都会带来相匹配的风险与收益。国企的权力架构和民企、外企非常不同,哪怕总经理决定了要变革,还得征求企业内部各路权力部门的认可与接受,变革的难度导致了我们通常看到和听到的“转型极其艰难”,“身为大家长要对几十万张嘴负责”等煽情苦情的自我表白。不要说数据分析,就连开除几个绩差员工,一不小心就要得罪人,严重了还要危及乌纱帽,改革谈何容易。
相比之下民企和外企在这方面的转变要敏捷、迅速很多。比如苹果,很多年前就开始全球范围导入JMP数据分析平台,在我们的跨国团队的帮助下从搭建数据分析能力、规范数据分析流程、导入高级数据分析方法、直到生产与研发环节的数据分析全球标准化等工作。整个过程长达数年,涉及到庞大的机构、人员、方法、流程的转变,却平稳有序。其间还发生了Steve Jobs辞世,新任CEO上台等足以中断一切的重大企业事件,但导入数据分析能力这一过程丝毫没有受到任何影响。
2 企业的运营能力储备
能力储备也是个关键要素。哪怕管理层决心一致,雄心壮志,重大变革能否落地,还得取决于团队能否升级与被变化。意志力尽管重要,体能却是个关键。数据分析对于参与者的统计、概率、数学、计算机、业务理解等几个方面的能力要求甚高。尽管“能力是可以培养的”,但是我们在国内这么多年的众多数据分析导入项目中,面临最多的挑战就是人员培训和流程变革。
以电信运营业为例,BOSS系统,各种业务系统和数据仓库搭建了许多年,数据分析对于客户行为的理解与促销产品的层出不穷也使得这个行业的数据分析应用远远超过绝大多数其他行业。但电信业在大规模导入数据分析方面面临的首要问题,仍然是专业人才储备以及与数据分析有关的规章制度、决策流程与文化体系的建立。
我们在市场上看到更多的,是IT部门主导的数据分析项目。项目名称是数据分析,而内容仔细一了解,往往都是数据仓库+企业报表。不是传统财务三表,而是用于展现核心KPI的图表。对“数据分析”不了解,把报表和制图当成“分析”,是这一现状的根源。
3 市场环节与竞争压力
不同企业对市场竞争的变化是非常不同而有趣的。比如三桶油,建立竞争力的方法,在于找油田、收购加油站,利用垄断性政策优势抬高行业准入门槛。三大电信运营商,若干年前曾经有子公司互相攻击,甚至发展到人员斗殴,割断对方光线网络的事件。而华为与中兴的竞争,若干年前除了口水仗,还有互相挖对方技术团队。
政策性垄断行业,尽管有压力,但是在提升生产力和生产效率的手段方面,改变缓慢而低效。 高度市场化领域,比如家电,汽车,消费电子,华工、医药等领域,对以数据分析为代表的“高级能力”的接受程度则高了不少。
综上所述,我国企业界对于数据分析的应用仍然停留在个别行业与个别应用的阶段。不过,尽管导入数据分析的过程是如此艰难而挫折,我仍然认为,随着我国各行业市场化进程的推动,随着互联网、数据分析技术不断对传统产业的颠覆过程,“数据分析”或者“大数据分析”迟早会成为中国企业界突破藩篱的关键手段。
数据大不大其实一点也不重要
只要是数据,里面必然有故事。与其在能力毫不匹配的情况下片面追求大数据,还不如立即行动起来,从手头、身边保有的小数据当中提取价值,进而为真正的大数据时代的数字化决策打下基础。
从微观角度来看,我们以中国零售及消费品行业为例,看看数据分析在这一领域的应用现状:
概要
公司对分析法的应用日益增多,但还远远不足以捕捉其可能的价值。为了认识到其价值所在,公司应再次将关注重心置于分析法上,构建并应用分析法来确定行动、发掘货架层面的商机。这样,分析法才能满足如今眼光敏锐、关注价值的消费者。
背景
企业内部采用的分析手段是非标准化的,零散的—--例如把图表当分析;
更多地关注数据获取和管理,而不是开展面向客户的预测性建模与数据挖掘。前者是IT工作,后者才是从数据里获取价值的过程
尚未在公司真正地运行或者构建持续的分析能力、分析流程和与数据分析有关的业务与管理决策机制。
而根据我们为中国企业提供JMP数据分析战略拓展与项目支持的多年经验,我们的建议是:
1 从项目级别的数据分析应用开始,逐渐现成项目组级别的标准化分析流程与业务决策制度。借助项目拓展出有基本分析与应用能力的团队;
2 将项目分析经验扩展到部门级别,拓展 数据分析—价值获取—业务决策 这一价值链。 根据部门级数据分析应用的需要来开展数据获取和管理。借助部门级引用导入拓展出数据分析与业务决策的流程,以及统一、先进的数据分析平台与业务实践库
3 从部门级到企业级应用,纵横两个维度都在拓展,需要企业管理层的高度参与与制度支持,推广基于数据分析为核心的文化与模式转变,建立支撑这些变化的长远的数据分析战略
4 至于数据是不是够大,是不是需要“云计算“,全看业务需要而定!
以上是小编为大家分享的关于“大数据”时代到来了么的相关内容,更多信息可以关注环球青藤分享更多干货
企业物流供应链数字化转型可以通过以下举措实现:
建立数字化物流平台:建立数字化物流平台,实现物流信息的实时共享和流通,提高物流效率和准确性。
推广物联网技术:推广物联网技术,实现物流设备的智能化和自动化,提高物流效率和准确性。
应用大数据分析:应用大数据分析技术,对物流数据进行分析和挖掘,提高物流效率和准确性。
推广电子商务:推广电子商务,实现线上线下的无缝衔接,提高物流效率和准确性。\
推广供应链金融:推广供应链金融,实现物流资金的快速流转和风险控制,提高物流效率和准确性。
推广区块链技术:推广区块链技术,实现物流信息的安全共享和可追溯性,提高物流效率和准确性。
推广人工智能技术:推广人工智能技术,实现物流智能化决策和自动化流程,提高物流效率和准确性。
综上所述,企业物流供应链数字化转型可以通过建立数字化物流平台、推广物联网技术、应用大数据分析、推广电子商务、推广供应链金融、推广区块链技术、推广人工智能技术等举措实现。
世界上还有些国家更重要的,那便是人类的良心。
some countries in the world is more important, it is human conscience。
关于本书
本书是作者项飚在自己的博士论文的基础上加工而成。为了完成论文,他在澳大利亚和印度做了两年的实地调查。本书的英文版于2006年由普林斯顿大学出版社出版,于2008年获得了美国人类学会颁发的安东尼·里兹奖,也就是城市人类学专著最高奖。
核心内容
为什么印度的整体社会发展缓慢,而软件出口却独领风骚?为什么美国有大量的外籍 IT 劳工?在高新科技领域,资本可以全球高速流转,那么从事这些行业的劳动力,又是如何被调动和管理的?
本书是作者基于在澳大利亚和印度进行的长达两年的实地调查后,观察与思考结果。他指出,IT产业中,劳动力的全球流动,关键在于其中的“猎身”体系,即跨国企业经由中介机构,从印度招收 IT 技术工人的行业链。作者在印度基层看到了实实在在的 IT 热,不仅是产品或是产业,更有大量的 IT 人。“猎身”体系把印度内在的社会结构和全球化的资本主义联系在了一起。
一、对猎身现象的定义
猎身是一个印度独有的特别现象。猎身的基本 *** 作是由印度人在世界各地开劳务中介(body shops),从印度招收 IT 工人,然后根据客户企业的项目需要把这些劳动力提供给客户。
为什么这种现象是印度独有?除了世界闻名的 IT 工人成本低、素质高、人数众多等这些原因以外,最关键的答案在于印度 IT 工人所负载的高额跨国剩余价值,即在印度生产 IT 劳动力所需的投入和全球市场的平均薪金之间的差额。发达国家,诸如澳大利亚和美国,都热切地希望吸引国际人才,但是这些国家的签证和移民政策并没有全面放开。面对高额利益和复杂的管理和手续,劳务中介应运而生。
不同于传统的招聘中介,劳务中介直接代表雇主管理工人。在猎身中,工人们与他们的真正雇主不发生任何的直接法律关系。专业化的运作在处理招聘工作和移民手续时更有效率,甚至在大规模解雇员工时也十分方便,不会给所在国造成太多负面影响。
二、印度基层的“IT人”生产线
IT 专业人士可以带来高额薪水,甚至改变全家人的生活,因此在印度基层,大量的资源被动员到 IT 人的生产过程中,成为一项当地经济与生活的集体工程。
嫁妆制度是其中一项关键的动员手段。印度婚姻中,女方支付嫁妆的多寡直接决定了女方的婚后家庭地位。当一个家庭中培养出了成功的从事 IT 行业儿子,首先引起周围人羡慕的,就是他能够为家庭带来数额不菲的嫁妆,而嫁妆被视为对新郎的父母早年为儿子投资的一种回报。最终形成了“钱农家女配城里新郎、本土新娘嫁给海外印度侨胞”有的典型婚姻模式。
基层的婚嫁市场大胆引入了“提前预售”和“期货”等现代经济学概念。新娘的父亲看上哪个男孩子有前途,可以出资赞助这个男孩子的大学学费和出国费用,条件是毕业后必须和他女儿结婚。成功的 IT 人不仅带来了高额嫁妆,他们丰厚的收入和海外汇款,也能帮助家庭中的其他女性支付嫁妆。在部分地区还形成了先嫁女儿、后娶媳妇的风俗,把所有女儿都嫁出去意味着家里将来不会再有大的花销,还可以在儿子结婚时对嫁妆进行合理的报价。由此,嫁妆制度成为了 IT 劳动力供给中重要的刺激手段。
除此之外,在“IT 人”的培育过程中,还出现了地主成立培训机构、家族筹款、嫁妆资助等多种现象,正是印度社会本身阶级、种姓和性别不平等的映照。
三、劳务中介的商业运作
在八九十年代,很多移民到澳大利亚的印度专业人员初衷是搞软件开发,最终却办起了劳务中介。这背后很大一方面的原因来自国籍的隐性歧视。当时在澳大利亚要进入传统软件市场非常困难,即使进入了 IT 行业,印度人也面临着职场上升通道过窄的问题,晋升到一定层级就无法上升,或者是技术岗很难转入管理岗。因此,部分专业人员“被迫”投身于猎身业。不过作为印度人,他们在 IT 劳务方面也有特殊优势,通过将猎身与其他的IT业务搭配经营,可以促进公司的整体发展。
猎身行业中也存在着“食物链”。IT 工人仰仗劳务中介的介绍,才能获得工作。而中小型的、也是数量最多的劳务中介都需要与大型中介合作,因为客户资源是被垄断的。即使中小型劳务中介提前知晓大公司的需求,也具备合适的人选,但是由于大公司往往只通过自己指定的中介外包公司合作,这些劳务中介也无法直接把人招进来。
在这条从大公司、大型中介、中小型中介到 IT 工人的行业食物链中,还存在着一个特殊的现象——“板凳术”。所谓“坐板凳”指的就是无限期的工作等待时间,类似于航空公司的过度卖票,即使有人退票,空出来的座位也不会被浪费。而中小中介会过度引进 IT 工人,等到大型中介抛出工作机会,他们就可以随时派送合适的人选,不至于浪费这个机会。商业公司可以随时从中挑选和淘汰技术工人,形成这个库存的成本由 IT 工人自己承担,又不会给当地政府和社会造成人才负担。
通过中介链和板凳术,猎身行业建立了一个巨大的,但是又高度分工的IT人才库存。印度人在跨国企业面前是弱势的,中小劳务中介在大型中介面前是弱势的。但是,猎身体系为底层的工人提供了成为企业家的通道,向上流动的希望使得他们愿意服从这样的体制。
四、猎身现象所展示的全球化的新现象
无论是印度国内的大公司,还是国外的中小公司,他们的发展都依赖着猎身系统。正是那些中小型劳务中介,还有失业中或者半失业的 IT 工人,为行业提供发展所必须的人力资源。猎身作为非正式的行业组织,反而是那些正式的、主导的 IT 行业的基础,而这个组织通过向工人卖工作、还有类似“坐板凳”等方式,将 IT 行业的风险转嫁到了普通 IT 工人的头上。
猎身现象看似依托“信息革命”和“全球化”等新概念,但它本身仍是基于一系列传统的社会各层次的不平等关系,猎身使得流动的劳动力与流动的资本相匹配。所以,曾经我们以为全球化时代改变了既有的世界秩序,但事实并没有发生本质的变化,不平等仍然根深蒂固。只不过,猎身导向了新的财富积累策略和价值转移方式。资本主义在猎身的案例中体现为不断加剧的人力和资本的跨国流动,在某种程度上又强化了既定格局。
作者希望这项研究可以促进成功者对现实新的理解和反思,并形成新的行动。除了那些高价值、高价值的劳动者,还有更多的人都对全球财富作出了直接或间接的贡献,但他们通常都被认为与全球化的进程没有关联。值得思考的是,他们为什么显得没有价值?是资本利用和财富积累效率的提高掩盖了这一切,市场的胜利让极端不平等显得不再是一个严重的问题。重新思考,是成功者的责任。这种意识上的转变才是未来逐步实现更加公平公正发展的先决条件。
金句
1 作者希望可以通过这一次聚焦印度的海外研究,做一次突破,不再单一化、中心化,而是去观察一个自己原本不了解的异乡社会。学术的精进总伴随着更广泛的社会事实来源,更开阔的眼界对新观念形成更有帮助,更有助于发展中国社会科学的新格局。
2 在 IT 劳动力需求和供给之间是否真的存在缺口并不重要,重要的是雇主希望看到劳动力供给不断扩大,从而能支持他们业务的持续扩张。
3 印度的 IT 热,热的不是 IT 产品的制造,而是“IT 人”的生产。
4 尽管猎身系统使得印度的IT工人们可以在全球化市场上自由就业,但在他们心目中,世界远没有变成一个无国籍、无边界的自由世界。
5 世界上的不同群体,无论是受益者还是牺牲者,无论是自愿还是被迫,都因为全球化而空前的联系在一起,没人能阻挡这一趋势。
以上就是关于“大数据”时代到来了么全部的内容,包括:“大数据”时代到来了么、企业物流供应链数字化转型有什么举措可以实现、《全球“猎身”:世界信息产业和印度的技术劳工》等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)