机器学习——KNN

机器学习——KNN,第1张

文章目录
  • 一、具体含义
  • 二、特点
  • 三、基本思路
  • 四、具体步骤
  • 五、实现代码

学习来源: 日撸 Java 三百行(51-60天,kNN 与 NB)

一、具体含义
  1. KNN是K-Nearest Neighbor的英文简写,中文直译就是K个最近邻,有人干脆称之为“最近邻算法”。
  2. 字母“K”也许看着新鲜,不过作用其实早在中学就接触过。在学习排列组合时,教材都喜欢用字母“n”来指代多个,譬如“求n个数的和”,这里面也没有什么秘密,就是约定俗成的用法。而KNN算法的字母K扮演的就是与n同样的角色。K的值是多少,就代表使用了多少个最近邻。机器学习总要有自己的约定俗成,没来由地就是喜爱用“K”而不是“n”来指代多个,类似的命名方法还有后面将要提到的K-means算法。
  3. KNN的关键在于最近邻,光看名字似乎与分类没有什么关系,但前面我们介绍了, KNN的核心在于多数表决,而谁有投票表决权呢?就是这个“最近邻”,也就是以待分类样本点为中心,距离最近的K个点。这K个点中什么类别的占比最多,待分类样本点就属于什么类别。
二、特点
  1. 简单. 没有学习过程, 也被称为惰性学习 lazy learning. 类似于开卷考试, 在已有数据中去找答案.
  2. 本源. 找相似, 正是人类认识事物的常用方法, 隐藏于人类或者其他动物的基因里面. 当然, 人类也会上当, 例如有人把邻居的滴水观音误认为是芋头, 偷食后中毒.
  3. 效果好. 永远不要小视 kNN, 对于很多数据, 你很难设计算法超越它.
  4. 适应性强. 可用于分类, 回归. 可用于各种数据.
  5. 可扩展性强. 设计不同的度量, 可获得意想不到的效果.
  6. 一般需要对数据归一化.
  7. 复杂度高. 这也是 kNN 最重要的缺点. 对于每一个测试数据, 复杂度为 O ( ( m + k ) n ) O((m+k)n)O((m+k)n), 其中 n nn 为训练数据个数, m mm 为条件属性个数, k kk 为邻居个数. 代码见 computeNearests().
三、基本思路
  1. KNN最核心的功能“分类”是通过多数表决“投票”来完成的,具体方法是在待分类点的K个最近邻中查看哪个类别占比最多。哪个类别多,待分类点就属于哪个类别。
  2. 怎样确定K——是一个需要根据实际情况调节以便取得更好拟合效果的参数,可以根据交叉验证等实验方法,结合工作经验进行设置。
  3. KNN中常用的度量方法——欧几里得距离和曼哈顿距离。
四、具体步骤
  1. 找K个最近邻。KNN分类算法的核心就是找最近的K个点,选定度量距离的方法之后,以待分类样本点为中心,分别测量它到其他点的距离,找出其中的距离最近的 K个,这就是K个最近邻。
  2. 统计最近邻的类别占比。确定了最近邻之后,统计出每种类别在最近邻中的占比。
  3. 选取占比最多的类别作为待分类样本的类别。
五、实现代码
package machinelearning.knn;

import java.io.FileReader;
import java.util.Arrays;
import java.util.Random;

import weka.core.Instances;

/**
 * 
 * @author Ling Lin E-mail:linling0.0@foxmail.com
 * 
 * @version 创建时间:2022年4月30日 上午10:19:24
 * 
 */
public class KnnClassification {

	// Manhattan distance.曼哈顿距离
	public static final int MANHATTAN = 0;

	// Euclidean distance.欧几里得距离
	public static final int EUCLIDEAN = 1;

	// The distance measure.
	public int distanceMeasure = EUCLIDEAN;

	// A random instance
	public static final Random random = new Random();

	// The number of neighbors
	int numNeighbors = 7;

	// The whole dataset.
	Instances dataset;

	// The training set. Represented by the indices of the data.
	int[] trainingSet;

	// The testing set. Represented by the indices of the data.
	int[] testingSet;

	// The predictions.
	int[] predictions;

	/**
	 * The first constructor.
	 * 
	 * @param paraFilename
	 *            The arff filename.
	 * 
	 */
	public KnnClassification(String paraFilename) {
		try {
			FileReader fileReader = new FileReader(paraFilename);
			dataset = new Instances(fileReader);
			// The last attribute is the decision class.
			dataset.setClassIndex(dataset.numAttributes() - 1);
			fileReader.close();
		} catch (Exception ee) {
			System.out.println("Error occurred while trying to read \'" + paraFilename
					+ "\' in KnnClassification constructor.\r\n" + ee);
			System.exit(0);
		} // Of try
	}// Of the first constructor

	/**
	 * Get a random indices for data randomization.
	 * 
	 * @param paraLength
	 *            The length of the sequence.
	 * @return An array of indices,e.g., {4, 3, 1, 5, 0, 2} with length 6.
	 */
	public static int[] getRandomIndices(int paraLength) {
		int[] resultIndices = new int[paraLength];

		// Step 1. Initialize.
		for (int i = 0; i < paraLength; i++) {
			resultIndices[i] = i;
		} // Of for i

		// Step 2. Randomly swap.
		int tempFirst, tempSecond, tempValue;
		for (int i = 0; i < paraLength; i++) {
			// Generate two random indices.
			tempFirst = random.nextInt(paraLength);
			tempSecond = random.nextInt(paraLength);

			// Swap.
			tempValue = resultIndices[tempFirst];
			resultIndices[tempFirst] = resultIndices[tempSecond];
			resultIndices[tempSecond] = tempValue;
		} // Of for i

		return resultIndices;
	}// Of getRandomInndices

	/**
	 * Split the data into training and testing parts.
	 * 
	 * @param paraTrainingFraction
	 *            The fraction of the training set.
	 */
	public void splitTrainingTesting(double paraTrainingFraction) {
		int tempSize = dataset.numInstances();
		int[] tempIndices = getRandomIndices(tempSize);
		int tempTrainingSize = (int) (tempSize * paraTrainingFraction);

		trainingSet = new int[tempTrainingSize];
		testingSet = new int[tempSize - tempTrainingSize];

		for (int i = 0; i < tempTrainingSize; i++) {
			trainingSet[i] = tempIndices[i];
		} // Of for i

		for (int i = 0; i < tempSize - tempTrainingSize; i++) {
			testingSet[i] = tempIndices[tempTrainingSize + i];
		} // Of for i
	}// Of splitTrainingTesting

	/**
	 * Predict for the whole testing set. The results are stored in predictions.
	 * #see predictions.
	 */
	public void predict() {
		predictions = new int[testingSet.length];
		for (int i = 0; i < predictions.length; i++) {
			predictions[i] = predict(testingSet[i]);
		} // Of for i
	}// Of predict

	/**
	 * Predict for given instance.
	 * 
	 * @return The prediction.
	 */
	public int predict(int paraIndex) {
		int[] tempNeighbors = computeNearests(paraIndex);
		int resultPrediction = simpleVoting(tempNeighbors);

		return resultPrediction;
	}// Of predict

	/**
	 * The distance between two instances.
	 * 
	 * @param paraI
	 *            The index of the first instance.
	 * @param paraJ
	 *            The index of the second instance.
	 * @return The distance.
	 */
	public double distance(int paraI, int paraJ) {
		double resultDistance = 0;
		double tempDifference;
		switch (distanceMeasure) {
		case MANHATTAN:
			for (int i = 0; i < dataset.numAttributes() - 1; i++) {
				tempDifference = dataset.instance(paraI).value(i) - dataset.instance(paraJ).value(i);
				if (tempDifference < 0) {
					resultDistance -= tempDifference;
				} else {
					resultDistance += tempDifference;
				} // Of if
			} // Of for i
			break;

		case EUCLIDEAN:
			for (int i = 0; i < dataset.numAttributes() - 1; i++) {
				tempDifference = dataset.instance(paraI).value(i) - dataset.instance(paraJ).value(i);
				resultDistance += tempDifference * tempDifference;
			} // Of for i
			break;
		default:
			System.out.println("Unsupported distance measure: " + distanceMeasure);
		}// Of switch

		return resultDistance;
	}// Of distance

	/**
	 * Get the accuracy of the classifier.
	 * 
	 * @return The accuracy.
	 */
	public double getAccuracy() {
		// A double divides an int gets another double.
		double tempCorrect = 0;

		for (int i = 0; i < predictions.length; i++) {
			if (predictions[i] == dataset.instance(testingSet[i]).classValue()) {
				tempCorrect++;
			} // Of if
		} // Of for i

		return tempCorrect / testingSet.length;
	}// Of getAccuracy

	/**
	 * Compute the nearest k neighbors. Select one neighbor in each scan. In
	 * fact we can scan only once. You may implement it by yourself.
	 * 
	 * @param paraK
	 *            the k value for kNN.
	 * @param paraCurrent
	 *            current instance. We are comparing it with all others.
	 * @return the indices of the nearest instances.
	 */
	public int[] computeNearests(int paraCurrent) {
		int[] resultNearests = new int[numNeighbors];
		boolean[] tempSelected = new boolean[trainingSet.length];
		double tempDistance;
		double tempMinimalDistance;
		int tempMinimalIndex = 0;

		// Select the nearest paraK indices.
		for (int i = 0; i < numNeighbors; i++) {
			tempMinimalDistance = Double.MAX_VALUE;

			for (int j = 0; j < trainingSet.length; j++) {
				if (tempSelected[j]) {
					continue;

				} // Of if

				tempDistance = distance(paraCurrent, trainingSet[j]);
				if (tempDistance < tempMinimalDistance) {
					tempMinimalDistance = tempDistance;
					tempMinimalIndex = j;
				} // Of if
			} // Of for j

			resultNearests[i] = trainingSet[tempMinimalIndex];
			tempSelected[tempMinimalIndex] = true;
		} // Of for i

		System.out.println("The nearest of " + paraCurrent + " are: " + Arrays.toString(resultNearests));
		return resultNearests;
	}// Of computeNearests

	/**
	 * Voting using the instances.
	 * 
	 * @param paraNeighbors
	 *            The indices of the neighbors.
	 * @return The predicted label.
	 */
	public int simpleVoting(int[] paraNeighbors) {
		int[] tempVotes = new int[dataset.numClasses()];
		for (int i = 0; i < paraNeighbors.length; i++) {
			tempVotes[(int) dataset.instance(paraNeighbors[i]).classValue()]++;
		} // Of for i

		int tempMaximalVotingIndex = 0;
		int tempMaximalVoting = 0;
		for (int i = 0; i < dataset.numClasses(); i++) {
			if (tempVotes[i] > tempMaximalVoting) {
				tempMaximalVoting = tempVotes[i];
				tempMaximalVotingIndex = i;
			} // Of if
		} // Of for i

		return tempMaximalVotingIndex;
	}// Of simpleVoting

	/**
	 * The entrance of the program.
	 * 
	 * @param args
	 *            Not used now.
	 */
	public static void main(String args[]) {
		KnnClassification tempClassifier = new KnnClassification("D:/00/data/iris.arff");
		tempClassifier.splitTrainingTesting(0.8);
		tempClassifier.predict();
		System.out.println("The accuracy of the classifier is: " + tempClassifier.getAccuracy());
	}// Of main

}// Of class KnnClassification

运行结果:

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/892559.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-14
下一篇 2022-05-14

发表评论

登录后才能评论

评论列表(0条)

保存