决策树-ID3

决策树-ID3,第1张

原理参考:
决策树:原理以及python实现

python实现:

import collections
import numpy as np

class ID3:
    def __init__(self, x, y, labels):
        self.x = x
        self.y = y
        self.data = np.hstack((self.x, self.y))
        self.labels = labels
        self.tree = {}
 
    def calEntropy(self, data):
        '''
        计算信息熵
        :param data:列表等序列
        :return:输入数据的信息熵
        '''
        entropy = 0
        c = collections.Counter(np.array(data).ravel())
        total = len(data)
        for i in c.values():
            entropy -= i/total * np.log(i/total)
        return entropy
 
    def splitdata(self, data, col, value):
        '''
        :param data:
        :param col:待划分特征列的数字索引
        :param value:
        :return:返回输入data的col列等于value的去掉col列的矩阵
        '''       
        data_r = data[data[:, col] == value]
        data_r = np.hstack((data_r[:, :col], data_r[:, col+1:]))
        #print(data, col,value,data_r)
        return data_r
 
    def getBestFeature(self, data):
        '''
        :param data: 形式为[x y]的矩阵
        :return: 最优特征所在列索引
        '''
        entropy_list = []
        numberAll = data.shape[0]
        #print('data',data)
        for col in range(data.shape[1]-1):
            entropy_splited = 0
            #print(data[:, col], np.unique(data[:, col]))
            for value in np.unique(data[:, col]):            
                y_splited = self.splitdata(data, col, value)[:, -1]
                #print(col,value,data)
                entropy = self.calEntropy(y_splited)
                entropy_splited += len(y_splited)/numberAll*entropy
            entropy_list.append(entropy_splited)
        #print(entropy_list)
        return entropy_list.index(min(entropy_list))
 
    def CreateTree(self, data, label):
        '''
        :param data: 形如[x y]的矩阵
        :param feature_label:
        :return: 决策树字典
        '''
        #print(np.unique(data[:, -1]))
        feature_label = label.copy()
        if len(np.unique(data[:, -1])) == 1:
            #print(data[0, -1])
            return data[0, -1]
        if data.shape[1] == 1:
            print(collections.Counter(data[:, -1]).most_common()[0][0])
            return collections.Counter(data[:, -1]).most_common()[0][0]
        bestFeature = self.getBestFeature(data)
        bestFeatureLabel = feature_label[bestFeature]
        #print(bestFeature, bestFeatureLabel)
        treeDict = {bestFeatureLabel: {}}
 
        del feature_label[bestFeature]
        #print(np.unique(data[:, bestFeature]))
        for value in np.unique(data[:, bestFeature]):
            sub_labels = feature_label[:]
            #print(feature_label,sub_labels)
            splited_data = self.splitdata(data, bestFeature, value)     
            #print(splited_data)     
            treeDict[bestFeatureLabel][value] = self.CreateTree(splited_data, sub_labels)
        print(treeDict)
        return treeDict
 
    def fit(self):
        self.tree = self.CreateTree(self.data, self.labels)
 
    def predict_vec(self, vec, input_tree=None):
        if input_tree==None:
            input_tree = self.tree

        featureIndex = self.labels.index(list(input_tree.keys())[0])
        #print(list(input_tree.keys()),featureIndex)
        secTree = list(input_tree.values())[0]
        #print(list(input_tree.values())[0])
        # #print(vec[featureIndex])
        vec_feature_val = vec[featureIndex]
        #print(vec_feature_val, secTree, secTree.get(vec_feature_val))

        if type(secTree.get(vec_feature_val)) != dict:
            #print(secTree.get(vec_feature_val))
            return secTree.get(vec_feature_val)
        else:
            #print(secTree.get(vec_feature_val))
            return self.predict_vec(vec, secTree.get(vec_feature_val))
 
    def predict(self, x):
        out_put=[]
        for i in x:
            out_put.append(self.predict_vec(i))
        return out_put
 
 
if __name__ == '__main__':
    x = np.array([[1, 1],[1, 1],[1, 0],[0, 1],[0, 1]])
    y = np.array([[1], [1], [0], [0], [0]])
    labels = [0, 1]
    id3 = ID3(x, y, labels)
    id3.fit()
    #print(id3.tree)
    print(id3.predict([[1, 0]]))

python调包:

import numpy as np
from sklearn import tree 

x = np.array([[1, 1],[1, 1],[1, 0],[0, 1],[0, 1]])
y = np.array([[1], [1], [0], [0], [0]])

clf = tree.DecisionTreeRegressor(max_depth=4)
clf.fit(x, y)
print('预测值为:', clf.predict([[1, 0]]))

C++实现:

#include 
#include 
#include 
#include 
#include 


void printMat(std::vector<std::vector<float>> mat)
{
	for (size_t i = 0; i < mat.size(); i++)
	{
		for (size_t j = 0; j < mat[0].size(); j++)
		{
			std::cout << mat[i][j] << " ";
		}
		std::cout << std::endl;
	}
	std::cout << std::endl;
}


struct TreeNode
{
	float label;
	float value;	
	std::vector<TreeNode*> children;
	bool isleaf = false;
};


class ID3
{
public:
	ID3(std::vector<std::vector<float>> x, std::vector<float> y, std::vector<float> labels)
	{
		m_x = x;
		m_y = y;
		m_labels = labels;
		m_data = x;
		for (size_t i = 0; i < x.size(); i++)
		{
			m_data[i].push_back(y[i]);
		}
	}

	float calEntropy(std::vector<float> data)
	{
		float entropy = 0;
		std::map<float, int> c;
		for (auto i:data)	++c[i];
		int total = data.size();
		for (std::map<float, int>::iterator it = c.begin(); it != c.end(); it++)
		{
			entropy -= it->second / total*log(it->second / total);
		}
		return entropy;
	}
	
	std::vector<std::vector<float>> splitdata(std::vector<std::vector<float>> data, int col, float value)
	{
		std::vector<int> index;
		for (size_t i = 0; i < data.size(); i++)
		{
			if (data[i][col] == value)	index.push_back(i);
		}

		std::vector<std::vector<float>> data_r(index.size());
		for (size_t i = 0; i < index.size(); i++)
		{
			std::vector<float> vec;
			for (size_t j = 0; j < data[0].size(); j++)
			{
				if (j != col)	vec.push_back(data[index[i]][j]);
			}
			data_r[i] = vec;
		}
		return data_r;
	}

	int getBestFeature(std::vector<std::vector<float>> data)
	{
		std::vector<float> entropy_list;
		int numberAll = data.size();
		for (size_t col = 0; col < data[0].size()-1; col++)
		{
			float entropy_splited = 0;
			std::set<float> s;
			for (size_t i = 0; i < data.size(); i++)
			{
				s.insert(data[i][col]);
			}

			for (auto value : s)
			{
				//printMat(data);
				//std::cout << col << " " << value << std::endl;
				std::vector<std::vector<float>> splited = splitdata(data, col, value);
				//printMat(splited);
				std::vector<float> y_splited(splited.size());
				for (size_t i = 0; i < splited.size(); i++)
				{
					y_splited[i] = splited[i][splited[0].size() - 1];
				}			
				float entropy = calEntropy(y_splited);
				entropy_splited += y_splited.size() / numberAll*entropy;
			}
			entropy_list.push_back(entropy_splited);
		}

		int min_index = 0;
		float min_value = INT_MAX;
		for (size_t i = 0; i < entropy_list.size(); i++)
		{
			if (entropy_list[i] < min_value)
			{
				entropy_list[i] = min_value;
				min_index = i;
			}
		}
		return min_index;
	}

	TreeNode* CreateTree(std::vector<std::vector<float>> data, std::vector<float> label)
	{
		std::vector<float> feature_label = label;
		std::set<float> s1;
		for (size_t i = 0; i < data.size(); i++)
		{
			s1.insert(data[i][data[0].size() - 1]);
		}
		//for (auto i : s1)	std::cout << i << " "; std::cout << std::endl;
		if (s1.size() == 1)
		{
			TreeNode* node = new TreeNode;
			node->isleaf = true;
			node->label = data[0][data[0].size() - 1];
			//std::cout << node->label << std::endl;
			return node;
		}
			
		if (data[0].size() == 1)
		{
			std::map<float, int> c;
			for (auto i : data[data[0].size() - 1])	++c[i];

			std::vector<std::pair<float, int>>  c_vec;
			for (std::map<float, int>::iterator it = c.begin(); it != c.end(); it++)
			{
				c_vec.push_back(std::make_pair((*it).first, (*it).second));
			}
			std::sort(c_vec.begin(), c_vec.end(), [](std::pair<float, int> p1, std::pair<float, int> p2) {return p1.second < p2.second; });

			TreeNode* node = new TreeNode;
			node->isleaf = true;
			node->label = c_vec.rbegin()->first;
			return node;
		}

		int bestFeature = getBestFeature(data);
		float bestFeatureLabel = feature_label[bestFeature];
		//std::cout << bestFeature << " " << bestFeatureLabel << std::endl;

		TreeNode* node = new TreeNode;
		node->label = bestFeatureLabel;

		feature_label.erase(feature_label.begin() + bestFeature);

		std::set<float> s2;
		for (size_t i = 0; i < data.size(); i++)
		{
			s2.insert(data[i][bestFeatureLabel]);
		}
		//for (auto i : s2)	std::cout << i << " "; std::cout << std::endl;

		for (auto value : s2)
		{
			std::vector<float> sub_labels = feature_label;
			//for (auto i : sub_labels)	std::cout << i << " "; std::cout << std::endl;
			std::vector<std::vector<float>> splited_data = splitdata(data, bestFeature, value);
			//printMat(splited_data);

			TreeNode* childnode =  CreateTree(splited_data, sub_labels);
			childnode->value = value;
			node->children.push_back(childnode);
		}
		//std::cout << node->children.size() << std::endl;
		return node;
	}

	void fit()
	{
		m_tree = CreateTree(m_data, m_labels);
	}

	TreeNode* predict_vec(std::vector<float> vec, TreeNode* input_tree = nullptr)
	{
		if (input_tree == nullptr)
			input_tree = m_tree;

		int featureIndex;
		for (size_t i = 0; i < m_labels.size(); i++)
		{
			if (m_labels[i] == input_tree->label)
			{
				featureIndex = i;
				break;
			}
		}
		//std::cout << input_tree->label << " " << featureIndex << std::endl;
		
		std::vector<TreeNode*> secTree = (input_tree->children);
		//std::cout << input_tree->children.size() << std::endl;

		float vec_feature_val = vec[featureIndex];
		//std::cout << vec_feature_val << std::endl;

		bool isdict;
		size_t i = 0;
		for (; i < secTree.size(); i++)
		{
			if (secTree[i]->value == vec_feature_val)
			{
				isdict = !(secTree[i]->isleaf);
				break;
			}
		}

		if (!isdict)
			return secTree[i];
		else
			return predict_vec(vec, secTree[i]);
	}

	std::vector<float> predict(std::vector<std::vector<float>> x)
	{
		std::vector<float> out_put;
		for (auto i : x)
			out_put.push_back(predict_vec(i)->label);
		return out_put;
	}

private:
	std::vector<std::vector<float>> m_x;
	std::vector<float> m_y;
	std::vector<std::vector<float>> m_data;
	std::vector<float> m_labels;
public:
	TreeNode* m_tree;
};


int main(int argc, char* argv[])
{
	std::vector<std::vector<float>> x = { { 1, 1 },{ 1, 1 },{ 1, 0 },{ 0, 1 },{ 0, 1 } };
	std::vector<float> y = { { 1 },{ 1 },{ 0 },{ 0 },{ 0 } };
	std::vector<float> labels = { 0, 1 };

	ID3 id3 = ID3(x, y, labels);
	id3.fit();
	std::cout << "预测值为:" << id3.predict({ { 1, 0 } })[0] << std::endl;

	system("pause");
	return EXIT_SUCCESS;
}

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/916117.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-16
下一篇 2022-05-16

发表评论

登录后才能评论

评论列表(0条)

保存