第1张


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


文章目录
    • 1.classification_report
    • 2.计算过程
    • 3.Macro Average
    • 4.Weighted Average
    • 5.Micro Average
    • 参考资料

1.classification_report

sklearn.metrics.classification_report输出分类预测结果的常用评估标准,输入是标签和类别的预测向量,包括精准度,召回率和F1 Score。

借用1个例子来说明一下计算过程。原例子见:

https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f

数据为:

from sklearn.metrics import classification_report
import numpy as np
names = ["Airplane", "Boat", "Car"]
names.sort()
class_dict = dict([[v, i] for i,v in enumerate(names)])
# {'Airplane': 0, 'Boat': 1, 'Car': 2}
tru = np.array([0, 2, 2, 2, 2, 0, 1, 2, 0, 2])
pre = np.array([0, 1, 2, 2, 1, 1, 1, 0, 0, 2])
report = classification_report(tru, pre)
print(report)

输出结果为:

              precision    recall  f1-score   support

           0       0.67      0.67      0.67         3
           1       0.25      1.00      0.40         1
           2       1.00      0.50      0.67         6

    accuracy                           0.60        10
   macro avg       0.64      0.72      0.58        10
weighted avg       0.82      0.60      0.64        10
2.计算过程

上述预测结果对应的混淆矩阵为:

每个类别对应的TP(True Positive)\FP(False Negative)\FN(False Negative)为:

计算每个类别的Precision, RecallF1 Score:

上述的结果对每个类别单个输出,如果要输出分类效果的整体指标,最好的办法就是对每个类别做平均。Macro Average,Weighted Average,Micro Average对应不同的平均方法。

3.Macro Average

Macro Average是直接对各指标求和求平均。

m a c r o _ a v g _ p r e c i s i o n = 0.67 + 0.25 + 1 3 = 0.64 macro\_avg\_precision = \frac{0.67 + 0.25 + 1}{3} = 0.64 macro_avg_precision=30.67+0.25+1=0.64
m a c r o _ a v g _ r e c a l l = 0.67 + 1.00 + 0.50 3 = 0.72 macro\_avg\_recall = \frac{0.67 + 1.00 + 0.50}{3} = 0.72 macro_avg_recall=30.67+1.00+0.50=0.72
m a c r o _ a v g _ f 1 − s c o r e = 0.67 + 0.40 + 0.67 3 = 0.58 macro\_avg\_f1-score = \frac{0.67 + 0.40 + 0.67}{3} = 0.58 macro_avg_f1score=30.67+0.40+0.67=0.58

在处理不平衡数据时,可以使用Macro Average衡量算法的效果。

4.Weighted Average

Weighted Average的计算方式为:

w e i g h t e d _ a v g _ p r e c i s i o n = 0.67 ∗ 0.3 + 0.25 ∗ 0.1 + 1.00 ∗ 0.67 = 0.82 weighted\_avg\_precision = 0.67*0.3 + 0.25 * 0.1 + 1.00 * 0.67 = 0.82 weighted_avg_precision=0.670.3+0.250.1+1.000.67=0.82

w e i g h t e d _ a v g _ r e c a l l = 0.67 ∗ 0.3 + 1.0 ∗ 0.1 + 0.5 ∗ 0.6 = 0.6 weighted\_avg\_recall = 0.67*0.3 + 1.0 * 0.1 + 0.5 * 0.6 = 0.6 weighted_avg_recall=0.670.3+1.00.1+0.50.6=0.6

w e i g h t e d _ a v g _ f 1 − s c o r e = 0.67 ∗ 0.3 + 0.4 ∗ 0.1 + 0.67 ∗ 0.6 = 0.64 weighted\_avg\_f1-score = 0.67*0.3 + 0.4 * 0.1 + 0.67 * 0.6 = 0.64 weighted_avg_f1score=0.670.3+0.40.1+0.670.6=0.64

如果处理不平衡数据时,但需要更多考虑算法在数据量较多的类别数据上表现效果,可以使用加权平均Weighted Average

5.Micro Average

m i c r o _ f 1 _ s c o r e = a c c u r a c y = m i c r o _ p r e c i s i o n = m i c r o _ r e c a l l micro\_f1\_score = accuracy = micro\_precision = micro\_recall micro_f1_score=accuracy=micro_precision=micro_recall

其等同于accuracy列对应的f1-score。在处理平衡数据时可以考虑使用Micro Average.

参考资料
  • Micro, Macro & Weighted Averages of F1 Score, Clearly Explained
  • sklearn.metrics.classification_report

欢迎访问个人网络日志🌹🌹知行空间🌹🌹


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/916262.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-16
下一篇 2022-05-16

发表评论

登录后才能评论

评论列表(0条)

保存