欢迎访问个人网络日志🌹🌹知行空间🌹🌹
文章目录
- 1.classification_report
- 2.计算过程
- 3.Macro Average
- 4.Weighted Average
- 5.Micro Average
- 参考资料
sklearn.metrics.classification_report
输出分类预测结果的常用评估标准,输入是标签和类别的预测向量,包括精准度,召回率和F1 Score。
借用1个例子来说明一下计算过程。原例子见:
https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
数据为:
from sklearn.metrics import classification_report
import numpy as np
names = ["Airplane", "Boat", "Car"]
names.sort()
class_dict = dict([[v, i] for i,v in enumerate(names)])
# {'Airplane': 0, 'Boat': 1, 'Car': 2}
tru = np.array([0, 2, 2, 2, 2, 0, 1, 2, 0, 2])
pre = np.array([0, 1, 2, 2, 1, 1, 1, 0, 0, 2])
report = classification_report(tru, pre)
print(report)
输出结果为:
precision recall f1-score support
0 0.67 0.67 0.67 3
1 0.25 1.00 0.40 1
2 1.00 0.50 0.67 6
accuracy 0.60 10
macro avg 0.64 0.72 0.58 10
weighted avg 0.82 0.60 0.64 10
2.计算过程
上述预测结果对应的混淆矩阵为:
每个类别对应的TP(True Positive)\FP(False Negative)\FN(False Negative)
为:
计算每个类别的Precision
, Recall
和F1 Score
:
上述的结果对每个类别单个输出,如果要输出分类效果的整体指标,最好的办法就是对每个类别做平均。Macro Average
,Weighted Average
,Micro Average
对应不同的平均方法。
Macro Average
是直接对各指标求和求平均。
m
a
c
r
o
_
a
v
g
_
p
r
e
c
i
s
i
o
n
=
0.67
+
0.25
+
1
3
=
0.64
macro\_avg\_precision = \frac{0.67 + 0.25 + 1}{3} = 0.64
macro_avg_precision=30.67+0.25+1=0.64
m
a
c
r
o
_
a
v
g
_
r
e
c
a
l
l
=
0.67
+
1.00
+
0.50
3
=
0.72
macro\_avg\_recall = \frac{0.67 + 1.00 + 0.50}{3} = 0.72
macro_avg_recall=30.67+1.00+0.50=0.72
m
a
c
r
o
_
a
v
g
_
f
1
−
s
c
o
r
e
=
0.67
+
0.40
+
0.67
3
=
0.58
macro\_avg\_f1-score = \frac{0.67 + 0.40 + 0.67}{3} = 0.58
macro_avg_f1−score=30.67+0.40+0.67=0.58
在处理不平衡数据时,可以使用Macro Average
衡量算法的效果。
Weighted Average
的计算方式为:
w e i g h t e d _ a v g _ p r e c i s i o n = 0.67 ∗ 0.3 + 0.25 ∗ 0.1 + 1.00 ∗ 0.67 = 0.82 weighted\_avg\_precision = 0.67*0.3 + 0.25 * 0.1 + 1.00 * 0.67 = 0.82 weighted_avg_precision=0.67∗0.3+0.25∗0.1+1.00∗0.67=0.82
w e i g h t e d _ a v g _ r e c a l l = 0.67 ∗ 0.3 + 1.0 ∗ 0.1 + 0.5 ∗ 0.6 = 0.6 weighted\_avg\_recall = 0.67*0.3 + 1.0 * 0.1 + 0.5 * 0.6 = 0.6 weighted_avg_recall=0.67∗0.3+1.0∗0.1+0.5∗0.6=0.6
w e i g h t e d _ a v g _ f 1 − s c o r e = 0.67 ∗ 0.3 + 0.4 ∗ 0.1 + 0.67 ∗ 0.6 = 0.64 weighted\_avg\_f1-score = 0.67*0.3 + 0.4 * 0.1 + 0.67 * 0.6 = 0.64 weighted_avg_f1−score=0.67∗0.3+0.4∗0.1+0.67∗0.6=0.64
如果处理不平衡数据时,但需要更多考虑算法在数据量较多的类别数据上表现效果,可以使用加权平均Weighted Average
。
m i c r o _ f 1 _ s c o r e = a c c u r a c y = m i c r o _ p r e c i s i o n = m i c r o _ r e c a l l micro\_f1\_score = accuracy = micro\_precision = micro\_recall micro_f1_score=accuracy=micro_precision=micro_recall
其等同于accuracy
列对应的f1-score
。在处理平衡数据时可以考虑使用Micro Average
.
- Micro, Macro & Weighted Averages of F1 Score, Clearly Explained
- sklearn.metrics.classification_report
欢迎访问个人网络日志🌹🌹知行空间🌹🌹
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)