如果一次性需要插入大批量数据,使用insert语句插入性能较低
可以使用MySQL数据库提供的load
指令进行数据插入
# 客户端连接服务端时,加上参数 `--local-infile`
mysql --local-infile -uroot -p
# 设置全局参数local_infile,开启从本地加载文件导入数据的关
set global local_infile = 1;
# 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/data.csv'
into table `tb_user`
fields terminated by ','
lines terminated by '\n';
示例
利用Python脚本生成测试数据
# Python >= 3.7.0
# 安装依赖 pip install faker pandas
from faker import Faker
import pandas as pd
# 简体中文:zh_CN
faker = Faker(locale="zh_CN")
# 指定随机种子,确保每次生成的数据都是一致的
faker.seed(1)
def get_row(index=0):
return {
'id': index + 1,
'username': faker.phone_number(),
'passowrd': faker.password(),
'name': faker.name(),
'birthday': faker.date_time().strftime("%Y-%m-%d"),
'sex': faker.random_int(0, 2),
}
def main():
# 100万条数据
data = [ get_row(i) for i in range(100 * 10000)]
# 将数据导出为csv文件, 不需要表头和序号
df = pd.DataFrame(data)
df.to_csv('./data_user.csv',
header=False,
index=False)
if __name__ == '__main__':
main()
查看数据
# 查看要导入的测试数据
$ wc -l data_user.csv
1000000 data_user.csv
$ head data_user.csv
1,13891417776,$h!PMHaS1#,魏玉珍,2021-12-20,1
2,18883533740,BP3UqgUd&8,正红梅,2020-08-11,1
3,18225851781,#$mMRcl98H,殳桂芝,1988-04-28,2
4,13190682883,ywDqePXl&0,仰俊,2007-06-25,2
5,13918401107,2!WP4H8it9,农琳,1993-05-13,1
6,13334148396,3%8AqgmG!j,宗涛,2020-03-08,1
7,13830411442,@&%9yI9r%e,荣建平,1977-02-08,2
8,15948705964,y2VGFM0k!W,齐英,1981-07-19,0
9,18983459845,I^5w1D^e)j,安凤英,2008-07-07,0
10,15154981741,@!4A^CIt82,乜峰,2007-06-11,1
创建测试表
# 开启外部数据加载
$ mysql --local-infile -uroot -p
> select @@local_infile;
> set global local_infile = 1;
# 创建一个新的数据库和新的表来存放数据
> show databases;
> create database data_temp;
> user data_temp;
> create table tb_user(
id int primary key auto_increment,
username varchar(50) not null,
passowrd varchar(50) not null,
name varchar(20) not null,
birthday date default null,
sex tinyint default 0,
unique key uk_user_username (`username`)
) engine=innodb default charset=utf8;
导入数据
# 导入数据
> load data local infile '/data/data_user.csv'
into table `tb_user`
fields terminated by ','
lines terminated by '\n';
Query OK, 999830 rows affected, 170 warnings (17.68 sec)
Records: 1000000 Deleted: 0 Skipped: 170 Warnings: 170
# 查看导入的数据
mysql> select * from tb_user limit 10;
+----+-------------+------------+-----------+------------+------+
| id | username | passowrd | name | birthday | sex |
+----+-------------+------------+-----------+------------+------+
| 1 | 13891417776 | $h!PMHaS1# | 魏玉珍 | 2021-12-20 | 1 |
| 2 | 18883533740 | BP3UqgUd&8 | 正红梅 | 2020-08-11 | 1 |
| 3 | 18225851781 | #$mMRcl98H | 殳桂芝 | 1988-04-28 | 2 |
| 4 | 13190682883 | ywDqePXl&0 | 仰俊 | 2007-06-25 | 2 |
| 5 | 13918401107 | 2!WP4H8it9 | 农琳 | 1993-05-13 | 1 |
| 6 | 13334148396 | 3%8AqgmG!j | 宗涛 | 2020-03-08 | 1 |
| 7 | 13830411442 | @&%9yI9r%e | 荣建平 | 1977-02-08 | 2 |
| 8 | 15948705964 | y2VGFM0k!W | 齐英 | 1981-07-19 | 0 |
| 9 | 18983459845 | I^5w1D^e)j | 安凤英 | 2008-07-07 | 0 |
| 10 | 15154981741 | @!4A^CIt82 | 乜峰 | 2007-06-11 | 1 |
+----+-------------+------------+-----------+------------+------+
10 rows in set (0.00 sec)
mysql> select count(*) from tb_user;
+----------+
| count(*) |
+----------+
| 999830 |
+----------+
1 row in set (0.14 sec)
100W数据,如果使用insert一条一条插入,或者是多条一起插入耗时很长。
使用load data local infile
的方式,仅耗时17.68秒
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)