阅读本文前对PPO的基本原理要有概念性的了解,本文基于我的上一篇文章:强化学习之PPO
当然,查看代码对于算法的理解直观重要,这使得你的知识不止停留在概念的层面,而是深入到应用层面。
代码采用了简单易懂的强化学习库PARL,对新手十分友好。
首先先来复述一下PARL的代码架构。强化学习可以看作智能体和环境交互学习的过程。而环境是独立于算法框架之外的内容。PARL把智能体分成了Agent,Algorthm,Model三个部分,这三个部分是层层嵌套的关系而不是相互独立的关系。Model负责定义神经网络模型,Algorithm负责利用Model的神经网络模型来定义算法。而Agent则负责利用算法来与环境进行交互和训练。
因此我们就分成三个部分来讲解PARL对PPO算法的实际应用。
如果想了解全貌,可以直接从主程序的main函数开始看。
神经网络模型PPO是一个Actor-Critic算法,我们需要给它定义两个神经网络模型,一个给actor,一个给Critic:
import parl
import paddle
import paddle.nn as nn
class MujocoModel(parl.Model):
def __init__(self, obs_dim, act_dim):
super(MujocoModel, self).__init__()
self.actor = Actor(obs_dim, act_dim)
self.critic = Critic(obs_dim)
def policy(self, obs):
return self.actor(obs)
def value(self, obs):
return self.critic(obs)
class Actor(parl.Model):
def __init__(self, obs_dim, act_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(obs_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc_mean = nn.Linear(64, act_dim)
# 此处创建了一个Tensor来表示标准差的log,用来提高模型的探索能力,并且这些参数可以自动优化
self.log_std = paddle.static.create_parameter(
[act_dim],
dtype='float32',
default_initializer=nn.initializer.Constant(value=0))
def forward(self, obs):
x = paddle.tanh(self.fc1(obs))
x = paddle.tanh(self.fc2(x))
mean = self.fc_mean(x)
return mean, self.log_std
class Critic(parl.Model):
def __init__(self, obs_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(obs_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, obs):
x = paddle.tanh(self.fc1(obs))
x = paddle.tanh(self.fc2(x))
value = self.fc3(x)
return value
可以看到,这个文件非常简单,定义了actor和critic两个网络的结构,然后用再用一个类来封装它们。
这两个网络都是较为简单的输入状态,经过线性层和激活函数后,输出动作和value。注意这里的价值网络指的是状态价值而不是动作价值,所以只输入了状态而没有输入动作。
PPO算法PPO有两种,第一种是用KL散度来限制更新幅度,第二种是直接clip更新幅度,一般现在用第二种方法。
import parl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Normal
from parl.utils.utils import check_model_method
__all__ = ['PPO']
class PPO(parl.Algorithm):
def __init__(self,
model,
clip_param,
value_loss_coef,
entropy_coef,
initial_lr,
eps=None,
max_grad_norm=None,
use_clipped_value_loss=True):
# 检查两个网络
check_model_method(model, 'value', self.__class__.__name__)
check_model_method(model, 'policy', self.__class__.__name__)
self.model = model
self.clip_param = clip_param
self.value_loss_coef = value_loss_coef
self.entropy_coef = entropy_coef
self.max_grad_norm = max_grad_norm
self.use_clipped_value_loss = use_clipped_value_loss
self.optimizer = optim.Adam(model.parameters(), lr=initial_lr, eps=eps)
def learn(self, obs_batch, actions_batch, value_preds_batch, return_batch,
old_action_log_probs_batch, adv_targ):
values = self.model.value(obs_batch)
mean, log_std = self.model.policy(obs_batch)
# 建立分布
dist = Normal(mean, log_std.exp())
# log_prob为计算定义的正态分布中对应的概率密度的对数,sum将其最后一个维度相加,并保持维度不变
action_log_probs = dist.log_prob(actions_batch).sum(-1, keepdim=True)
# 计算熵
dist_entropy = dist.entropy().sum(-1).mean()
# 这四行为PPO算法计算目标优化函数的公式,计算actor网络的loss
ratio = torch.exp(action_log_probs - old_action_log_probs_batch)
surr1 = ratio * adv_targ
surr2 = torch.clamp(ratio, 1.0 - self.clip_param,
1.0 + self.clip_param) * adv_targ
action_loss = -torch.min(surr1, surr2).mean()
# 计算critic网络的loss
if self.use_clipped_value_loss:
value_pred_clipped = value_preds_batch + \
(values - value_preds_batch).clamp(-self.clip_param, self.clip_param)
value_losses = (values - return_batch).pow(2)
value_losses_clipped = (value_pred_clipped - return_batch).pow(2)
value_loss = 0.5 * torch.max(value_losses,
value_losses_clipped).mean()
else:
value_loss = 0.5 * (return_batch - values).pow(2).mean()
self.optimizer.zero_grad()
# 三个Loss一定比例相加,其中为了增加探索性,熵越大越好,因此为负
(value_loss * self.value_loss_coef + action_loss -
dist_entropy * self.entropy_coef).backward()
nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.optimizer.step()
return value_loss.item(), action_loss.item(), dist_entropy.item()
# actor和critic的输出
def sample(self, obs):
value = self.model.value(obs)
mean, log_std = self.model.policy(obs)
# 通过均值和标准差建立高斯分布
dist = Normal(mean, log_std.exp())
# 对分布进行采样
action = dist.sample()
# log_prob为计算定义的正态分布中对应的概率密度的对数,sum将其最后一个维度相加,并保持维度不变
action_log_probs = dist.log_prob(action).sum(-1, keepdim=True)
return value, action, action_log_probs
# 通过输入状态到actor来预测动作输出
def predict(self, obs):
mean, _ = self.model.policy(obs)
return mean
# 通过输入状态到critic来计算
def value(self, obs):
return self.model.value(obs)
智能体
智能体初始化的参数中传入了algorithm,说明PPO算法是嵌套在智能体中的。
import parl
import paddle
class MujocoAgent(parl.Agent):
def __init__(self, algorithm):
super(MujocoAgent, self).__init__(algorithm)
# 通过状态来预测动作输出
def predict(self, obs):
obs = paddle.to_tensor(obs, dtype='float32')
action = self.alg.predict(obs)
return action.detach().numpy()
# 给定状态,预测状态价值,动作,以及动作概率密度的对数的加和
def sample(self, obs):
obs = paddle.to_tensor(obs)
value, action, action_log_probs = self.alg.sample(obs)
return value.detach().numpy(), action.detach().numpy(), \
action_log_probs.detach().numpy()
# 重要!调用该函数即进行学习
def learn(self, next_value, gamma, gae_lambda, ppo_epoch, num_mini_batch,
rollouts):
""" Learn current batch of rollout for ppo_epoch epochs.
Args:
next_value (np.array): next predicted value for calculating advantage
gamma (float): the discounting factor
gae_lambda (float): lambda for calculating n step return
ppo_epoch (int): number of epochs K
num_mini_batch (int): number of mini-batches
rollouts (RolloutStorage): the rollout storage that contains the current rollout
"""
value_loss_epoch = 0
action_loss_epoch = 0
dist_entropy_epoch = 0
# PPO中每次学习迭代的次数ppo_epoch
for e in range(ppo_epoch):
# 得到采样的数据
data_generator = rollouts.sample_batch(next_value, gamma,
gae_lambda, num_mini_batch)
for sample in data_generator:
obs_batch, actions_batch, \
value_preds_batch, return_batch, old_action_log_probs_batch, \
adv_targ = sample
obs_batch = paddle.to_tensor(obs_batch)
actions_batch = paddle.to_tensor(actions_batch)
value_preds_batch = paddle.to_tensor(value_preds_batch)
return_batch = paddle.to_tensor(return_batch)
old_action_log_probs_batch = paddle.to_tensor(
old_action_log_probs_batch)
adv_targ = paddle.to_tensor(adv_targ)
# 使用PPO计算Loss,并自己调整网络参数
value_loss, action_loss, dist_entropy = self.alg.learn(
obs_batch, actions_batch, value_preds_batch, return_batch,
old_action_log_probs_batch, adv_targ)
value_loss_epoch += value_loss
action_loss_epoch += action_loss
dist_entropy_epoch += dist_entropy
num_updates = ppo_epoch * num_mini_batch
value_loss_epoch /= num_updates
action_loss_epoch /= num_updates
dist_entropy_epoch /= num_updates
return value_loss_epoch, action_loss_epoch, dist_entropy_epoch
# 给定状态,评估状态价值
def value(self, obs):
obs = paddle.to_tensor(obs)
val = self.alg.value(obs)
return val.detach().numpy()
storage
储存信息的类
import numpy as np
from paddle.io import BatchSampler, RandomSampler
class RolloutStorage(object):
def __init__(self, num_steps, obs_dim, act_dim):
self.num_steps = num_steps
self.obs_dim = obs_dim
self.act_dim = act_dim
self.obs = np.zeros((num_steps + 1, obs_dim), dtype='float32')
self.actions = np.zeros((num_steps, act_dim), dtype='float32')
self.value_preds = np.zeros((num_steps + 1, ), dtype='float32')
self.returns = np.zeros((num_steps + 1, ), dtype='float32')
self.action_log_probs = np.zeros((num_steps, ), dtype='float32')
self.rewards = np.zeros((num_steps, ), dtype='float32')
self.masks = np.ones((num_steps + 1, ), dtype='bool')
self.bad_masks = np.ones((num_steps + 1, ), dtype='bool')
self.step = 0
def append(self, obs, actions, action_log_probs, value_preds, rewards,
masks, bad_masks):
self.obs[self.step + 1] = obs
self.actions[self.step] = actions
self.rewards[self.step] = rewards
self.action_log_probs[self.step] = action_log_probs
self.value_preds[self.step] = value_preds
self.masks[self.step + 1] = masks
self.bad_masks[self.step + 1] = bad_masks
self.step = (self.step + 1) % self.num_steps
def sample_batch(self,
next_value,
gamma,
gae_lambda,
num_mini_batch,
mini_batch_size=None):
# calculate return and advantage first
self.compute_returns(next_value, gamma, gae_lambda)
advantages = self.returns[:-1] - self.value_preds[:-1]
advantages = (advantages - advantages.mean()) / (
advantages.std() + 1e-5)
# generate sample batch
mini_batch_size = self.num_steps // num_mini_batch
sampler = BatchSampler(
sampler=RandomSampler(range(self.num_steps)),
batch_size=mini_batch_size,
drop_last=True)
for indices in sampler:
obs_batch = self.obs[:-1][indices]
actions_batch = self.actions[indices]
value_preds_batch = self.value_preds[:-1][indices]
returns_batch = self.returns[:-1][indices]
old_action_log_probs_batch = self.action_log_probs[indices]
value_preds_batch = value_preds_batch.reshape(-1, 1)
returns_batch = returns_batch.reshape(-1, 1)
old_action_log_probs_batch = old_action_log_probs_batch.reshape(
-1, 1)
adv_targ = advantages[indices]
adv_targ = adv_targ.reshape(-1, 1)
yield obs_batch, actions_batch, value_preds_batch, returns_batch, old_action_log_probs_batch, adv_targ
def after_update(self):
self.obs[0] = np.copy(self.obs[-1])
self.masks[0] = np.copy(self.masks[-1])
self.bad_masks[0] = np.copy(self.bad_masks[-1])
def compute_returns(self, next_value, gamma, gae_lambda):
self.value_preds[-1] = next_value
gae = 0
for step in reversed(range(self.rewards.size)):
delta = self.rewards[step] + gamma * self.value_preds[
step + 1] * self.masks[step + 1] - self.value_preds[step]
gae = delta + gamma * gae_lambda * self.masks[step + 1] * gae
gae = gae * self.bad_masks[step + 1]
self.returns[step] = gae + self.value_preds[step]
主程序
from collections import deque
import numpy as np
import paddle
import gym
from mujoco_model import MujocoModel
from mujoco_agent import MujocoAgent
from storage import RolloutStorage
from parl.algorithms import PPO
from parl.env.mujoco_wrappers import wrap_rms, get_ob_rms
from parl.utils import summary
import argparse
LR = 3e-4
GAMMA = 0.99
EPS = 1e-5 # Adam optimizer epsilon (default: 1e-5)
GAE_LAMBDA = 0.95 # Lambda parameter for calculating N-step advantage
ENTROPY_COEF = 0. # Entropy coefficient (ie. c_2 in the paper)
VALUE_LOSS_COEF = 0.5 # Value loss coefficient (ie. c_1 in the paper)
MAX_GRAD_NROM = 0.5 # Max gradient norm for gradient clipping
NUM_STEPS = 2048 # data collecting time steps (ie. T in the paper)
PPO_EPOCH = 10 # number of epochs for updating using each T data (ie K in the paper)
CLIP_PARAM = 0.2 # epsilon in clipping loss (ie. clip(r_t, 1 - epsilon, 1 + epsilon))
BATCH_SIZE = 32
# Logging Params
LOG_INTERVAL = 1
# 用于评估策略
def evaluate(agent, ob_rms):
eval_env = gym.make(args.env)
eval_env.seed(args.seed + 1)
eval_env = wrap_rms(eval_env, GAMMA, test=True, ob_rms=ob_rms)
eval_episode_rewards = []
obs = eval_env.reset()
while len(eval_episode_rewards) < 10:
action = agent.predict(obs)
# Observe reward and next obs
obs, _, done, info = eval_env.step(action)
# get validation rewards from info['episode']['r']
if done:
eval_episode_rewards.append(info['episode']['r'])
eval_env.close()
print(" Evaluation using {} episodes: mean reward {:.5f}\n".format(
len(eval_episode_rewards), np.mean(eval_episode_rewards)))
return np.mean(eval_episode_rewards)
def main():
paddle.seed(args.seed)
# 创建环境
env = gym.make(args.env)
env.seed(args.seed)
env = wrap_rms(env, GAMMA)
# 创建模型
model = MujocoModel(env.observation_space.shape[0],
env.action_space.shape[0])
# 根据模型创建PPO算法
algorithm = PPO(model, CLIP_PARAM, VALUE_LOSS_COEF, ENTROPY_COEF, LR, EPS,
MAX_GRAD_NROM)
# 根据PPO算法创建智能体
agent = MujocoAgent(algorithm)
# 实例化一个数据存储的类
rollouts = RolloutStorage(NUM_STEPS, env.observation_space.shape[0],
env.action_space.shape[0])
# 重置环境,获取第一个状态,并存入rollouts
obs = env.reset()
rollouts.obs[0] = np.copy(obs)
# 创建队列
episode_rewards = deque(maxlen=10)
num_updates = int(args.train_total_steps) // NUM_STEPS
# 开始训练,训练总步数为args.train_total_steps
for j in range(num_updates):
for step in range(NUM_STEPS):
# 得到当前的状态,由两个神经网络得到状态价值,动作,以及概率密度函数的加和
value, action, action_log_prob = agent.sample(rollouts.obs[step])
# 把动作输入环境中,得到下一个状态,奖励,是否游戏结束,以及信息
obs, reward, done, info = env.step(action)
# 把奖励信息添加到列表中
if done:
episode_rewards.append(info['episode']['r'])
# 其他信息
masks = paddle.to_tensor(
[[0.0]] if done else [[1.0]], dtype='float32')
bad_masks = paddle.to_tensor(
[[0.0]] if 'bad_transition' in info.keys() else [[1.0]],
dtype='float32')
# 给rollouts添加信息
rollouts.append(obs, action, action_log_prob, value, reward, masks,
bad_masks)
# 输入下一个状态,得到下一个状态对应的状态价值
next_value = agent.value(rollouts.obs[-1])
# 关键一行,计算Loss,并进行一次学习,一次学习中包含若干个PPO epoch
value_loss, action_loss, dist_entropy = agent.learn(
next_value, GAMMA, GAE_LAMBDA, PPO_EPOCH, BATCH_SIZE, rollouts)
rollouts.after_update()
# 打印信息
if j % LOG_INTERVAL == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * NUM_STEPS
print(
"Updates {}, num timesteps {},\n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n"
.format(j, total_num_steps, len(episode_rewards),
np.mean(episode_rewards), np.median(episode_rewards),
np.min(episode_rewards), np.max(episode_rewards),
dist_entropy, value_loss, action_loss))
# 评估智能体
if (args.test_every_steps is not None and len(episode_rewards) > 1
and j % args.test_every_steps == 0):
ob_rms = get_ob_rms(env)
eval_mean_reward = evaluate(agent, ob_rms)
summary.add_scalar('ppo/mean_validation_rewards', eval_mean_reward,
(j + 1) * NUM_STEPS)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='RL')
parser.add_argument(
'--seed', type=int, default=616, help='random seed (default: 616)')
parser.add_argument(
'--test_every_steps',
type=int,
default=10,
help='eval interval (default: 10)')
parser.add_argument(
'--train_total_steps',
type=int,
default=10e5,
help='number of total time steps to train (default: 10e5)')
parser.add_argument(
'--env',
default='Hopper-v3',
help='environment to train on (default: Hopper-v3)')
args = parser.parse_args()
main()
注意事项
- 在运行程序之前要安装好mujoco,有坑。
- 可以看到PPO算法采用了三个Loss,目的如下:首先actor的Loss是为了让优势函数A越高越好 ,Critic的Loss是让其输出与目标输出越接近越好,而actor输出分布的熵让它在达成目的的同时越大越好,有利于系统的稳定性。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)