Actor 模式是一个解决分布式计算的数学模型,其中 Actor 是基础,它能回应接收到消息,能够自我决策,创建更多的 Actor,发送更多的消息,决定如何回应下一个接收到的消息。Actor 认为一切皆是 Actor,类似于面向对象认为一切皆 Object 一样。OO 的执行是顺序的,Actor 模型内在设计就是并行的。
Actor 是计算实体,它回复接收到的消息,能够并行的:
这些 *** 作并没有顺序要求,它们能够并行地实施。由于没有对消息的时序做规定,Actor 模式是一种异步模型,发送到 Actor 不等待消息被接收而继续执行。Actor 之间不共享状态,如果想获取其他 Actor 的状态,只能通过消息请求的方式。
Actor 在消息内部指定接收消息的 Actor 地址。Actor 可以用自己的地址发送消息,相当于自己接收到自己发送的消息,可以驱动自己的状态。
Actor 可以被认为是在用户空间实现的并发实体,所以它应该是应用级别的线程。如果认同这个观点那么 Actor 要满足的要求 = *** 作系统对进程/线程 提出的要求一样。
每个并发实体都是要有一个固定的数据结构,必须有一个容器可以保存当前所有的并发实体。这一点基本上很容易满足,Akka 中 Actor 就是一个类,所以它的结构就是这个类的数据结构,大小也就是这个类的大小。Akka 中的 Dispatcher 保存有所有 Actor 的列表。
*** 作系统的是通过临界区,锁来定义多线程共享数据模型的。在 Actor 中是通过消息来共享数据的。基于消息传递要求“数据只读”,你发送出去的数据再修改肯定就不对了。但是这一点在 Java 里面无论如何都是做不到的,你不修改变量的引用但是还可以修改变量里面的值,调用对象的方法。
这是最重要的:没有调度,并发实体根本不能称之为并发实体。 *** 作系统中 CPU 是由内核管理的,调度算法是基于时间片来调任务的,内核随时可以剥夺一个任务的 CPU 使用权这就是“抢占”。这一点非常重要,没有这个功能就意味着调度是不公平的。一个任务耗费大量 CPU 会把另个一任务给饿死。但是在用户空间(应用层)很难实现这一点,毕竟 CPU 是不受应用程序的控制的,没有把办法剥夺。抢占看似可有可无,但是没有它就没有“公平调度”,也就谈不上并发。(有任务撑死,有任务饿死)
比如写两个 Actor,使用无限循环输出字符串(while(true))会疯狂的吃 CPU,如果是可抢占的公平调度,则 actor1 和 actor2 应该是比较有规律的交替(大家得到的 CPU 时间差不多)
ErLang 非常均匀的任务切换,实现了“可抢占的公平”。
如果甲用户和乙用户的两个事务同时发生,甲事务锁住了表A未释放(因为整个事务未完成),正在准备访问B表,而乙事务锁住了表B未释放(因为整个事务未完成),正在准备访问A表,可是A表被甲事务锁住了,等甲事务释放,而甲事务真正等待乙事务释放B表,陷入了无限等待,也就是死锁Dead Lock。也有道友使用多线程来模拟存储过程:http://www.jdon.com/45727,每个线程里开启一个事务,类似上述问题也会出现死锁。
问题出在哪里?
是我们的思路方向出现问题:
其实无论是使用数据库锁 还是多线程,这里有一个共同思路,就是将数据喂给线程,就如同计算机是一套加工流水线,数据作为原材料投入这个流水线的开始,流水线出来后就是成品,这套模式的前提是数据是被动的,自身不复杂,没有自身业务逻辑要求。适合大数据处理或互联网网站应用等等。
但是如果数据自身要求有严格的一致性,也就是事务机制,数据就不能被动被加工,要让数据自己有行为能力保护实现自己的一致性,就像孩子小的时候可以任由爸妈怎么照顾关心都可以,但是如果孩子长大有自己的思想和要求,他就可能不喜欢被爸妈照顾,他要求自己通过行动实现自己的要求。
数据也是如此。
只有我们改变思路,让数据自己有行为维护自己的一致性,才能真正安全实现真正的事务。
数据+行为=对象,有人问了,对象不是也要被线程调用吗?
例如下述代码,因为对象的行为要被线程调用,我们要使用同步锁synchronized :
public class A {
private volatile int lower, upper//两个状态值
public int getLower() { return lower}
public int getUpper() { return upper}
public synchronized void setAUpper(int value){
if (value <a.getUpper())
a.setLower(value)
}
public asynchronization void setALower(int value){
if (value >a.getLower())
a.setUpper(value)
}
}
上面这段代码业务逻辑是想实现lower<upper:
1. lower和upper的初始值是(0, 5),
2.一个客户端请求线程A: setLower(4)
一个客户端请求线程B: setUpper(3)
3. lower和upper是 (4, 3)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)