请教高手!如何分析无重复的多种处理下重复测量数据(为时间序列)?SPSS中是否可以 *** 作?

请教高手!如何分析无重复的多种处理下重复测量数据(为时间序列)?SPSS中是否可以 *** 作?,第1张

将大鼠分为四组,经处理后于3天,5天,7天抽血,测CD4,CD8淋巴细胞,比较各组间及组内有无差别。准备用 SPSS行重复测量资料的多变量分析,不知数据如何输入及处理,上网查了几天都没头绪,那位高手指点下啊!

用重复测量设计是没有错的,这里就是你的大鼠分组是如何分组的?

晕!这些天一直在搞统计,头都蒙了,老鼠分组都记错了。大鼠是分为三组行肾移植,一组同基因空白对照,一组为异基因空白对照,另一组为药物处理组。移植后于3天,5天,7天抽血,测CD4,CD8淋巴细胞。

那位兄弟帮帮我啊,我都快抓狂了!

采用重复测量方差分析(带有一个重复设计的两因素方差分析)就可以了

统计之星兄弟,能否说详细一点?CD4,CD8反映大鼠的免疫功能,就如身高,体重反映个体的健康状态一样,想用多变量分析,能用重复设计的两因素方差分析吗?

个人有两种想法:

1.用多元方差分析,将时间看成是其中的一个因素处理.不过这种用法好象还不太科学,因为有数据独立性的问题!

2.先用主成分分析方法,提取一个能反映CD4和CD8的公共因子,再由这个对这个因子进行重复测量方差分析!这就要看主成分分析的效果了!如果特征根和累计贡献率很大的话,应该是可以说明问题的!

dabing2001的想法好高档。

重复测量资料当反应变量是多变量时,可进行多元重复测量分析,解决dabing2001想法1中有关数据独立性的问题。

当反映变量很多时可考虑降维的思想,2个变量就没必要了。

数据独立性的问题 可以用GLMM,GEE及counting process 解决

楼上几位说得好复杂啊,好多词汇我都没听说过,汗!

请教healt***兄弟,SPSS如何做多元重复测量分析?

Analyze->General lineal model->Repeated measures

多变量数据如何输入?

用重复测量方差分析时还要看一下数据是否符合球形对称的问题,这也是一个应用条件。

在前面我们学习了一种有监督的降维方法——线性判别分析(Linear Dscriminant Analysis,LDA)。LDA不仅是一种数据压缩方法还是一种分类算法,LDA将一个高维空间中的数据投影到一个低维空间中去,通过最小化投影后各个类别的类内方差和类间均值差来寻找最佳的投影空间。

本文介绍的主成分分析(Principe Component Analysis,PCA)也是一种降维技术,与LDA不同的是,PCA是一种无监督降维技术,因此PCA的主要思想也与LDA不同。LDA是一种有监督的分类兼降维技术,因此其最大化均值差最小化类内差的思想够保证在降维后各个类别依然能够很好地分开。但PCA只用来降维而无需分类,因此PCA需要考虑的是如何在降维压缩数据后尽可能的减少数据信息的损失。在PCA中使用协方差来表示信息量的多少,至于为什么能这么表示后面再进行介绍。下面我们从一些基本的线代知识开始。

在进行数据分析时我们的数据样本经常被抽象为矩阵中的一组向量,了解一些线代基础知识理解PCA非常重要,但在这里我们并不准备也不可能将所有的线代知识都罗列以便,因此这里我们仅会复习一些对理解PCA较为重要的东西。更多线代的内容可参考下面几个链接:

为了方便,我们这里以一个二维平面为例。

在前面我们说了,在数据处理时我们经常讲一个样本数据当作一个向量。在二维平面中,一个向量从不同的角度有不同的理解方式,例如对于向量 (-2, 3) T :

在我们描述任何东西的时候其实都是选择了一个参照系的,也即事物都是相对的,最简单的运动与静止(以静止的事物为参照),说一个有点意思的——人,人其实也是放在一个参考系中的,我们可以将其理解为生物种类系统,抛开这个大的系统去独立的定义人是很难让人理解的。向量也是这样的,虽然我们前面没有指明,但是上面的向量其实是在一个默认坐标系(或称为空间)中的,也即x,y轴,但是在线性代数中我们称其为基。在线代中任何空间都是由一组线性无关的(一维空间由一个基组成)基向量组成。这些基向量可以组成空间中的任何向量。

现在假设我们有如下一个矩阵相乘的式子:

因此,上面的例子可以有两种理解方式:

(1)如果我们将值全为1对角方阵视为标准坐标系,则它表示在 i=(1, -2) T 和 j=(3, 0) T 这组基底下的坐标 (-1, 2) T 在基底 (1, 0) T 、(0, 1) T 下的坐标,如下:

当我们讨论向量 (-1, 2) T 时,都隐含了一个默认的基向量假设:沿着x轴方向长度为1的 i,沿着y轴长度为1的j。

但是,(-1, 2) T 可以是任何一组基底下的向量。例如,他可能是i'=(2,1) T , j'=(-1, 1) T 这组基下的一个向量。此时他在我们默认坐标系 i=(1, 0) T ,j=(0, 1) T 下的计算过程如下:

我们可以从另一个角度理解基地变换的过程:我们先 误认为 (-1, 2) T 是坐标系i=(1, 0) T ,j=(0, 1) T 下的坐标,此时我们通过线性变换[[2, -1], [1, 1]](每个嵌套列表看做一行)把坐标轴i,j(基坐标)分别变换到了新的位置 i1=(2, 1) T , j1=(-1, 1) T (他们也是用默认坐标系表示的),即[2, -1], [1, 1]]。此时我们把“误解”转换成了真正的向量。如下:

在上面我们说了矩阵是一种变换,现在我们继续从这个角度来理解特征值和特征向量。为了方便理解,我们在这里做一个类比——将变换看作物理中的作用力。我们知道一个力必须有速度和方向,而矩阵对一个向量施加的变换也是一样的。考虑一下特征向量的定义:

上面介绍了一些基本的线性代数相关的知识,下面开始介绍PCA的原理。

上面我们讨论了选择不同的基可以对同样一组数据给出不同的表示,而且如果基的数量少于向量本身的维数,则可以达到降维的效果。但是我们还没有回答一个最最关键的问题:如何选择基才是最优的。或者说,如果我们有一组N维向量,现在要将其降到K维(K小于N),那么我们应该如何选择K个基才能最大程度保留原有的信息?

要完全数学化这个问题非常繁杂,这里我们用一种非形式化的直观方法来看这个问题。

为了避免过于抽象的讨论,我们仍以一个具体的例子展开。假设我们的数据由五条记录组成,将它们表示成矩阵形式:

其中每一列为一条数据记录,而一行为一个字段。为了后续处理方便,我们首先将每个字段内所有值都减去字段均值,其结果是将每个字段都变为均值为0(这样做的道理和好处后面会看到)。中心化的数据为:

通过上一节对基变换的讨论我们知道,这个问题实际上是要在二维平面中选择一个方向,将所有数据都投影到这个方向所在直线上,用投影值表示原始记录。这是一个实际的二维降到一维的问题。

那么如何选择这个方向(或者说基)才能尽量保留最多的原始信息呢?一种直观的看法是:希望投影后的投影值尽可能分散。

以上图为例,可以看出如果向x轴投影,那么最左边的两个点会重叠在一起,中间的两个点也会重叠在一起,于是本身四个各不相同的二维点投影后只剩下两个不同的值了,这是一种严重的信息丢失,同理,如果向y轴投影最上面的两个点和分布在x轴上的两个点也会重叠。所以看来x和y轴都不是最好的投影选择。我们直观目测,如果向通过第一象限和第三象限的斜线投影,则五个点在投影后还是可以区分的。

下面,我们用数学方法表述这个问题。

对于上面二维降成一维的问题来说,找到那个使得方差最大的方向就可以了。不过对于更高维,还有一个问题需要解决。考虑三维降到二维问题。与之前相同,首先我们希望找到一个方向使得投影后方差最大,这样就完成了第一个方向的选择,继而我们选择第二个投影方向。

如果我们还是单纯只选择方差最大的方向,很明显,这个方向与第一个方向应该是“几乎重合在一起”,显然这样的维度是没有用的,因此,应该有其他约束条件。 从直观上说,让两个字段尽可能表示更多的原始信息,我们是不希望它们之间存在(线性)相关性的,因为相关性意味着两个字段不是完全独立,必然存在重复表示的信息。

可以看到,在字段均值为0的情况下,两个字段的协方差简洁的表示为其内积除以元素数m。

当协方差为0时,表示两个字段完全独立。为了让协方差为0,我们选择第二个基时只能在与第一个基正交的方向上选择。因此最终选择的两个方向一定是正交的。

至此,我们得到了降维问题的优化目标: 将一组N维向量降为K维(K大于0,小于N),其目标是选择K个单位(模为1)正交基,使得原始数据变换到这组基上后,各字段两两间协方差为0,而字段的方差则尽可能大(在正交的约束下,取最大的K个方差)。

上面我们导出了优化目标,但是这个目标似乎不能直接作为 *** 作指南(或者说算法),因为它只说要什么,但根本没有说怎么做。所以我们要继续在数学上研究计算方案。

我们看到,最终要达到的目的与字段内方差及字段间协方差有密切关系。因此我们希望能将两者统一表示,仔细观察发现,两者均可以表示为内积的形式,而内积又与矩阵相乘密切相关。于是我们来了灵感:

假设我们只有a和b两个字段,那么我们将它们按行组成矩阵X:

然后我们用X乘以X的转置,并乘上系数1/m:

根据矩阵相乘的运算法则,这个结论很容易被推广到一般情况:

设我们有m个n维数据记录,将其按列排成n乘m的矩阵X,设C=1/m(XX T ),则C是一个对称矩阵,其对角线分别个各个字段的方差,而第i行j列和j行i列元素相同,表示i和j两个字段的协方差。

根据上述推导,我们发现要达到优化目前,等价于将协方差矩阵对角化:即除对角线外的其它元素化为0,并且在对角线上将元素按大小从上到下排列,这样我们就达到了优化目的 。这样说可能还不是很明晰,我们进一步看下原矩阵与基变换后矩阵协方差矩阵的关系:

设原始数据矩阵X对应的协方差矩阵为C,而P是一组基按行组成的矩阵,设Y=PX,则Y为P对X做基变换后的数据。设Y的协方差矩阵为D,我们推导一下D与C的关系:

现在所有焦点都聚焦在了协方差矩阵对角化问题上,有时,我们真应该感谢数学家的先行,因为矩阵对角化在线性代数领域已经属于被玩烂了的东西,所以这在数学上根本不是问题。

由上文知道,协方差矩阵C是一个是对称矩阵,在线性代数上,实对称矩阵有一系列非常好的性质:

1)实对称矩阵不同特征值对应的特征向量必然正交。

2)设特征向量λ重数为r,则必然存在r个线性无关的特征向量对应于λ,因此可以将这r个特征向量单位正交化。

则对协方差矩阵C有如下结论:

以上结论不再给出严格的数学证明,对证明感兴趣的朋友可以参考线性代数书籍关于“实对称矩阵对角化”的内容。

到这里,我们发现我们已经找到了需要的矩阵P:P = E T .

P是协方差矩阵的特征向量单位化后按行排列出的矩阵,其中每一行都是C的一个特征向量。如果设P按照Λ中特征值的从大到小,将特征向量从上到下排列,则用P的前K行组成的矩阵乘以原始数据矩阵X,就得到了我们需要的降维后的数据矩阵Y。

PCA的特征向量的求解除了使用上述最大化方差的矩阵分解方法,还可以使用最小化损失法,具体可参见: 机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA) 。

总结一下PCA的算法步骤:

设有m条n维数据。

LDA和PCA都用于降维,两者有很多相同,也有很多不同的地方,因此值得好好的比较一下两者的降维异同点。

首先我们看看相同点:

我们接着看看不同点:

参考:

PCA的数学原理

线性代数的直觉

线性判别分析LDA原理总结


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10021916.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-04
下一篇 2023-05-04

发表评论

登录后才能评论

评论列表(0条)

保存