1、打开月度项目,工作进度表。
2、可以看到菜单栏上的选项,输入开始日,结束日,函数自动计算日程。
3、计划,实际柱形区域自动变色,月报表轻松完成。
4、柱形区域设置好条件格式,多项目就整2行复制,简单易懂。
不管是周报、还是月报都离不开报告的三步曲:1、本周/本月完成的工作情况。
2、遇到的困难和对工作的意见、建议。
3、对下周/下月的工作计划。
只要把这些详细诉述下来,基本就可以完成一个报告了。
其实公司要求做报告就是对你工作的一个了解过程,所以尽量详细一点。
希望对你有所帮助吧!
大数据相关工作岗位很多,有大数据分析师、大数据挖掘算法工程师、大数据研发工程师、数据产品经理、大数据可视化工程师、大数据爬虫工程师、大数据运营专员、大数据架构师、大数据专家、大数据总监、大数据研究员、大数据科学家等等。数据分析师:
工作内容:
a.临时取数分析,比如双11大促活动分析;产品的流量转化情况、产品流程优化分析,等等;
b.报表需求分析--比如企业常见的日报、周报、月报、季报、年报、产品报表、流量转化报表、经营分析报表、KPI报表等等;
c.业务专题分析:
精准营销分析(用户画像分析、营销对象分析、营销策略分析、营销效果分析);
风控分析(策略分析,反欺诈分析,信用状况分析);
市场研究分析(行业分析、竞品分析、市场分析、价格分析、渠道分析、决策分析等等);
工具和技能:
工具: R、Python、SAS、SPSS、Spark、X-Mind、Excel、PPT
技能:需掌握SQL数据库、概率统计、常用的算法模型(分类、聚类、关联、预测等,每一类模型的一两种最典型的算法)、分析报告的撰写、商业的敏感性等等;
数据挖掘工程师:
工作内容:
a.用户基础研究:用户生命周期刻画(进入、成长、成熟、衰退、流失)、用户细分模型、用户价值模型、用户活跃度模型、用户意愿度识别模型、用户偏好识别模型、用户流失预警模型、用户激活模型等
b.个性化推荐算法:基于协同过滤(USERBASE/ITEMBASE)的推荐,基于内容推荐,基于关联规则Apriot算法推荐,基于热门地区、季节、商品、人群的推荐等
c.风控模型:恶意注册模型、异地识别模型、欺诈识别模型、高危会员模型、
电商领域(炒信模型、刷单模型、职业差评师模型、虚假发货模型、反欺诈模型)
金融领域(欺诈评分模型、征信评分模型、催收模型、虚假账单识别模型等)
d.产品知识库:产品聚类分类模型、产品质量评分模型、违禁品识别模型、假货识别模型等
e.文本挖掘、语义识别、图像识别,等等
工具和技能:
工具: R、Python、SAS、SPSS、Spark、Mlib等等
技能:需掌握SQL数据库、概率统计、机器学习算法原理(分类、聚类、关联、预测、神经网络等)、模型评估、模型部署、模型监控;
数据产品经理:
工作内容:
a.大数据平台建设,让获取数据、用数据变得轻而易举;构建完善的指标体系,实现对业务的全流程监控、提高决策效率、降低运营成本、提升营收水平;
b.数据需求分析,形成数据产品,对内提升效率、控制成本,对外增加创收,最终实现数据价值变现;
c.典型的大数据产品:大数据分析平台、个性化推荐系统、精准营销系统、广告系统、征信评分系统(如芝麻评分)、会员数据服务系统(如数据纵横),等等;
工具和技能:
工具: 除了掌握数据分析工具,还需要掌握 像 原型设计工具Auxe、画结构流程的X-Mind、visio、Excel、PPT等
技能:需掌握SQL数据库、产品设计,同时,熟悉常用的数据产品框架
数据研发工程师:
工作内容:
a.大数据采集、日志爬虫、数据上报等数据获取工作
b.大数据清洗、转换、计算、存储、展现等工作
c.大数据应用开发、可视化开发、报表开发等
工具和技能:
工具:hadoop、hbase、hive、kafaka、sqoop、java、python等
技能:需掌握数据库、日志采集方法、分布式计算、实时计算等技术
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)