那首要简略介绍一下非联系型数据库的长处——易扩展、数据量大、功能高、数据库结构简略。这些长处决议了它在架构的层面上的可扩展才能十分强,读写功能也很高,尤其是数据之间的无联系性,这也是其差异于联系型数据库的最大特色。
联系型数据库的特色在于储存方法采用表格的方法,白用结构化的方法存储数据,为了避免重复、规范化数据以及充分利用好存储空间,把数据按照最小联系表的局势进行存储,这样数据管理的就可以变得十分清晰和一目了然。同时联系型数据库只具有纵向扩展才能,扩展的空间也是有限的,因而在数据分析和数据处理中需求格外留意。
别的,尽管联系型数据库存储数据和处理数据的可靠性很不错,可是一旦面对海量数据的处理的时分功率就会变得很差,特别是遇到高并发读写的时分功能就会下降,那么在面对海量数据进行大数据分析的时分,就要格外留意在读写的进程当中。
关于数据库在数据分析中如何应用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解
1.明确目的和思路
首先明白本次的目的,梳理分析思路,并搭建整体分析框架,把分析目的分解,化为若干的点,清晰明了,即分析的目的,用户什么样的,如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑性。
2.数据收集
根据目的和需求,对数据分析的整体流程梳理,找到自己的数据源,进行数据分析,一般数据来源于四种方式:数据库、第三方数据统计工具、专业的调研机构的统计年鉴或报告(如艾瑞资讯)、市场调查。
3.数据处理
数据收集就会有各种各样的数据,有些是有效的有些是无用的,这时候我们就要根据目的,对数据进行处理,处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法,将各种原始数据加工成为产品经理需要的直观的可看数据。
4.数据分析
数据处理好之后,就要进行数据分析,数据分析是用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。
5.数据展现
一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图等。进一步加工整理变成我们需要的图形,如金字塔图、矩阵图、漏斗图、帕雷托图等。
6.报告撰写
撰写报告一定要图文结合,清晰明了,框架一定要清楚,能够让阅读者读懂才行。结构清晰、主次分明可以使阅读者正确理解报告内容图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)