1、脱离数据库软件,从基础教程开始了解其概念、分类、思想
2、主要学习关系型数据库以及 *** 作数据库的语句sql(结构化查询
语言,这很重要)
有本《数据库系统概论》,对上面两点讲述很清楚
3、学习数据库工具 access或者sql 或者 oracle,数据库工具都离不开
sql。
上面步骤学好数据库后,建议再学习一个开发语言,比如 java、delphi什么的,这样才能开发出好的数据库程序。
第一方面是数学基础,第二方面是统计学基础,第三方面是计算机基础。要想在数据分析的道路上走得更远,一定要注重数学和统计学的学习。数据分析说到底就是寻找数据背后的规律,而寻找规律就需要具备算法的设计能力,所以数学和统计学对于数据分析是非常重要的。
而想要快速成为数据分析师,则可以从计算机知识开始学起,具体点就是从数据分析工具开始学起,然后在学习工具使用过程中,辅助算法以及行业致死的学习。学习数据分析工具往往从Excel工具开始学起,Excel是目前职场人比较常用的数据分析工具,通常在面对10万条以内的结构化数据时,Excel还是能够胜任的。对于大部分职场人来说,掌握Excel的数据分析功能能够应付大部分常见的数据分析场景。
在掌握Excel之后,接下来就应该进一步学习数据库的相关知识了,可以从关系型数据库开始学起,重点在于Sql语言。掌握数据库之后,数据分析能力会有一个较大幅度的提升,能够分析的数据量也会有明显的提升。如果采用数据库和BI工具进行结合,那么数据分析的结果会更加丰富,同时也会有一个比较直观的呈现界面。
数据分析的最后一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。
对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站搜索尚学堂官方号,大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲得很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。1. 第一阶段(一般岗位叫数据专员)
基本学会excel(VBA最好学会会做透视表熟练用筛选、排序、公式),做好PPT。这样很多传统公司的数据专员已经可以做了
2. 第二阶段(数据专员~数据分析师)
这一阶段要会SQL,懂业务,加上第一阶段的那些东西。大多数传统公司和互联网小运营、产品团队够用了。
3. 第三阶段(数据分析师)
统计学熟练(回归、假设检验、时间序列、简单蒙特卡罗),可视化,PPT和excel一定要溜。这些技术就够了,能应付大多数传统公司业务和互联网业务。
4. 第四阶段(分裂)
数据分析师(数据科学家)、BI等:这部分一般是精进统计学,熟悉业务,机器学习会使用(调参+选模型+优化),取数、ETL、可视化啥的都是基本姿态。
可视化工程师:这部分国内比较少,其实偏重前端,会high charts,d3.js, echarts.js。技术发展路线可以独立,不在这四阶段,可能前端转行更好。
ETL工程师:顾名思义,做ETL的。
大数据工程师:熟悉大数据技术,hadoop系二代。
数据工程师(一部分和数据挖掘工程师重合):机器学习精通级别(往往是几种,不用担心不是全部,和数据分析师侧重点不同,更需要了解组合模型,理论基础),会组合模型形成数据产品计算机基本知识(包括linux知识、软件工程等)各类数据库(RDBMS、NoSQL(4大类))
数据挖掘:和上基本相同。
爬虫工程师:顾名思义,最好http协议、tcp/ip协议熟悉。技术发展路线可以独立,不在这四阶段
发现回答的有点文不对题额,不过大致是所有从底层数据工作者往上发展的基本路径。往数据发展的基本学习路径可以概括为以下内容:
1. EXCEL、PPT(必须精通)
数据工作者的基本姿态,话说本人技术并不是很好,但是起码会 *** 作要会大胆秀自己,和业务部门交流需求,展示分析结果。技术上回VBA和数据透视就到顶了。
2. 数据库类(必须学)
初级只要会RDBMS就行了,看公司用哪个,用哪个学哪个。没进公司就学MySQL吧。
NoSQL可以在之后和统计学啥的一起学。基本的NoSQL血MongoDB和Redis(缓存,严格意义上不算数据库),然后(选学)可以了解各类NoSQL,基于图的数据库Neo4j,基于Column的数据库BigTable,基于key-value的数据库redis/cassendra,基于collection的数据库MongoDB。
3. 统计学(必须学)
如果要学统计学,重要概念是会描述性统计、假设检验、贝叶斯、极大似然法、回归(特别是广义线性回归)、主成分分析。这些个用的比较多。也有学时间序列、bootstrap、非参之类的,这个看自己的意愿。
其他数学知识:线性代数常用(是很多后面的基础),微积分不常用,动力系统、傅里叶分析看自己想进的行业了。
4. 机器学习(数据分析师要求会选、用、调)
常用的是几个线性分类器、聚类、回归、随机森林、贝叶斯不常用的也稍微了解一下深度学习视情况学习。
5. 大数据(选学,有公司要求的话会用即可,不要求会搭环境)
hadoop基础,包括hdfs、map-reduce、hive之类后面接触spark和storm再说了。
6. 文本类(选学,有公司要求的话会用即可)
这部分不熟,基本要知道次感化、分词、情感分析啥的。
7. 工具类
语言:非大数据类R、Python最多(比较geek的也有用julia的,不差钱和某些公司要求的用SAS、Matlab)大数据可能还会用到scala和java。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)