如何分析热重曲线图

如何分析热重曲线图,第1张

关于热重曲线图的分析如下:

TG曲线外推起始点:TG台阶前水平处作切线与曲线拐点处作切线的相交点,可作为该失/增重过程起始发生的参考温度点,多用于表征材料的热稳定性。

TG曲线外推终止点:TG台阶后水平处作切线与曲线拐点处作切线的相交点,可作为该失/增重过程结束的参考温度点。

DTG曲线峰值:质量变化速率最大的温度/时间点,对应于TG曲线上的拐点。质量变化:分析TG曲线上任意两点间的质量差,用来表示一个失重(或增重)步骤所导致的样品的质量变化。残余质量:测量结束时样品所残余的质量。

另外,在软件中还可对TG曲线的拐点(与DTG峰温等同)、DTG曲线外推起始点(更接近于真正意义上的反应起始温度)、DTG曲线外推终止点(更接近于真正意义上的反应结束温度)等特征参数进行标示。

由TG-DTA曲线可以得到样品的质量和热效应的变化信息,在实际的数据分析和作图中通常将TG曲线和DTA曲线放在一起进行综合分析。绿色曲线为TG曲线,蓝色曲线为DTA曲线。

当TG曲线的质量发生变化时(第一个台阶对应于失去一分子结晶水的过程,第二个质量变化台阶对应于失去一分子CO的过程,第三个质量变化台阶对应于失去一分子CO2的过程)。DTA曲线中对于这个质量变化过程分别表现出了不同的热效应,分别对应于每一个质量变化过程。

影响热分析测量的实验因素

一、升温速率对热分析实验结果的影响

升温速率对热分析实验结果有十分明显的影响,总体来说,可概括为如下几点。

1)京仪高科对于以TG(热重分析),DTA(差热分析仪)或DSC(差示扫描量热分析)曲线表示的试样的某种反应(如热分解反应),提高升温速率通常是使反应的起始温度Ti,峰温Tp和终止温度Tf增高。快速升温,使得反应尚未来得及进行,便进入更高的温度,造成反应滞后。如FeCO3在氮气中升温失去CO2的反应,当升温速率从1℃/min提高到20℃/min时,则Ti从400℃升高到480℃,Tf是500-610℃]。

2)快速升温是将反应推向在高温区以更快的速度进行,即不仅使DTA曲线的峰温Tp升高,且峰幅变窄,呈尖高状。

3)对多阶反应,慢速升温有利于阶段反应的相互分离,使DTA曲线呈分离的多重峰,TG曲线由本来快速升温时的转折,转而呈现平台。

4)DTA曲线的峰面积随升温速率的降低而略有减小的趋势,但一般来讲相差不大,如高岭石在大约600℃的脱水吸热反应,当升温速率范围为5-20℃/min时,峰面积最大相差在士3%以内。

5)升温速率影响试样内各部位的温度分布。如厚度为1mm的低密度聚乙烯DSC测定表明,当升温速率为25℃•min时,试样内外温差不大;而80℃/min时温差可达10℃以上。

对结晶高聚物,慢速升温熔融过程可能伴有再结晶,而快速升温易产生过热,这是两个相互矛盾的过程,故试验时应选择适当的升温速率,遵从相应标准的有关规定。如无特殊要求和说明,通常选取10或5℃/min。

该测试方法的最大优点是定量性强,并能准确地测定出物质的起始分解温度、分解速率,而且试样用量少,分辨率高。但热重法在测试过程中受影响的因素较多,如气氛流量、填充方式、试样粒度、升温速率以及试样量的多少,这些因素都会影响测试结果。为得到比较理想的测试结果,必须要研究各种影响因素的特点,针对各因素的特点采用不同的解决方法,使负面因素的影响减小到最低限度,保证测试结果的准确性。

实验结果与讨论

1升温速率

升温速率是影响TG曲线的主要因素之一,其对热分解的起始温度、终止温度和中间产物的检出都有着较大的影响。升温速率越慢, 特别是对多步失重的样品来说,分辨率就会提高,每步的失重过程就会在TG曲线上显示的比较清晰,但 最大的缺点就是测试太耗时。反之,升温速率越快,在TG曲线上邻近的两个失重平台区分越不明显

,如果试样在加热过程中生成中间产物,则在TG曲线上就很难检出。此外,升温速率如果快,试样的起始分解温度和终止分解温度也会随升温速率的增大而提高,从而使反应曲线向高温方向移动。这是由于升温速率越大,所产生的热滞后现象越严重而导致的。图1为某有机物样品在氮气流量为20ml/min,升温速率分别为10℃/min、20℃/min时的TG曲线。从图中可以看出,随着升温速率的增大,反应的起始温度和终止温度也增高,TG曲线向高温侧移动,产生滞后现象。这是因为传热需要一定的时间,当升温速率增加时,样品内部不能及时升温挥发和分解

设置测试的升温速率要根据客户的测试目的及样品的物理、化学性能而定。若是不了解其物化性能的样品,应采用较快的升温速率先测一次看其结果后再定待测样品的升温速率。而对于一些含能材料,由于其在一定温度下会发生激烈反应,所以在试样量较少的前提下,可适当提高升温速率。 总而言之,选择合适的升温速率是提高测试精度的一个关键因素。

2试样量

升温速率相同,试样用量越多,升温过程中试样内部的温度差就越大

。当发生分解反应时,若有吸热或放热现象,在反应过程中试样的温度偏差就越严重,从而引起的TG曲线畸变程度也越大;试样量太多,试样内部分解产生的气体产物难以逸出,会阻碍反应的顺畅进行。图2为升温速率在10℃/min,氮气流量为20ml/min,某有机物样品质量分别为5mg、10mg时测得的TG曲线。从图中可以看出,随着样品量的增多,TG曲线向高温方向移动,温度区间变宽。这是因为试样用量越大

,试样内部的温度梯度越大,当其表面达到分解温度后,要经过较长时间内部才能达到分解温度,导致炉子的程序控温与试样内部温度产生时间上的滞后,表现在TG曲线上就出现程序控温比实际的热分解温度偏高,曲线向高温方向偏移。同时,试样用量也会影响逸出气体在试样粒子间的空隙向外的扩散速度。样品的分解与气体挥发是同时进行的,采用较大的样品量时,热分解反应会产生较多的气体,这些气体需要较长的挥发时间,样品量的增加会增加气体的扩散阻力,在试样间隙和表面上形成一定分压,进而影响样品的分解,使样品的分解温度变高,从而使得TG曲线向高温移动。

为了得到一条好的曲线,必须要掌握样品的用量。根据实践经验,对于一些热感度较低的物质,失重率低的物质,样品用量可多些。而对于失重率高和反应比较剧烈的样品,用量绝对不能多,一般应控制在05mg以下,

否则不但会突然增重,引起曲线变形,重者还会损坏仪器。试样用量的多少,应控制在热重分析仪灵敏度范围内。

3气氛流量

热重法通常可在静态或动态气氛下进行测试。在静态气氛下,虽然随着温度的升高,反应速度加快,但由于试样周围的气体浓度增大,将阻止反应的继续,使反应速度反而减慢。为了获得重复性较好的试验结果,多数情况下都是做动态气氛下的热分析,它可以将反应生成的气体及时带走,有利于反应的顺利进行。同时气流增加了炉内气体的对流传热,导致试样升温及时,对程序升温的反应时间缩短。

4试样粒度

试样粒度对热传导、气体扩散有着较大的影响,例如,试样粒度不同,对气体产物扩散的影响也不同,因而会改变试样的反应速度,进而改变TG曲线的形状。试样的晶粒大可能会产生烧爆作用,从而使TG曲线上出现突然失重。试样粒度越小,达到温度平衡也,越快,对于给定的温度,分解程度也越大。一般说来,试样粒度越小,初始分解温度Ti和终止分解温度Tf都相应降低,反应区间变窄,试样颗粒度大往往得不到较好的TG曲线。为了得到较好的试验结果,要求试样粒度均匀。

5填充方式

实验证明,试样装填方式对TG曲线也有影响。一般来说,试样装填越紧密,试样颗粒间接触越好,越有利于热传导,因而温度滞后越小

。但试样装填越紧密,越不利于气氛向试样内扩散,不利于气氛与试样颗粒的接触,更严重的是阻碍了分解气体产物的扩散和逸出,从而影响热重分析的测试结果。

结论

本文探讨了影响热重分析结果的一些因素,目的在于在实际测量过程中,尽可能减小这些因素对TG曲线的影响,以提高热重分析的测试质量。所以必须要加强对热重分析技术的研究,发现产生热重分析系统误差的规律及其原因,并找到解决问题的方法。

一、热重谱解析:

S --> A + B,

原物质 -->剩余物质 + 失去物质,

3(精确值从测定数据中获得,下同)-->( )+02,(单位可能是mg)(谱中读出数据)

样品S的分子量 -->( )+ x(失去物质的分子量)后二式中的-->、()和+都可以不写,这里写出来是为了占用位置,使对应关系更明确

根据热重谱,可列出比例关系方程:

3/(样品S的分子量)=02/x,

x=失去物质的分子量=02(样品S的分子量)/3

查原子量、根据化学知识,推断具有该分子量的物质的组成式。比如,得到18(计算值可以在175~185),那是水分子;比如CO2,计算值在44左右。你们的这个样品物质这个温度下已经基本分解殆尽,所以,X计算值一个接近于样品物质分子量。

注意,该测定可能有误差。350度时已经接近于0,后来可能氮气保护不够,有些氧化或其它反应,略有增重。最后又全部失去,应该成为0,但热重谱的余重反而为负005。这是称重误差所致。

二、DTA谱

《在升温程序下物质物理变化、化学变化的热效应及其质量效应》,在联合解析TG谱和DTA/DSC谱时,通过分析样品物质的质量效应和热效应,从而可以获得对样品物质发生的物理变化或化学变化的起源的判断。

热效应分吸热、放热;质量效应分失重、恒重、增重。对于不同的变化过程行实验来说,这样排列的五列算个顺序表头吧,能给出信息的记为“v(钩)”;不能给出信息的用“-”。

《在升温程序下物质物理变化、化学变化的热效应及其质量效应》表如下:

物理过程:

熔融:v--v-,

结晶:-v-v-,

晶型转变:vv-v-,

液晶转变:v--v-,

固化点转变:v--v-,

玻璃化转变:(前两列:基线偏移、无峰)第3、4、5列:-v-,

热容转变:(前两列:基线改变、无峰)第3、4、5列:-v-,

磁居里点转变:(前两列:基线变位、常有峰)第3、4、5列:-v-,

蒸发、汽化:v-v--,

升华:v-v--,

吸收、吸水:v---v,

吸附:-v--v,

解吸附:v-v--,

凝聚、凝固:-v-v-

化学过程:

热分解:-vv--,

在气氛中氧化:-vv-v,

在气氛中还原:v-v-v,

氧化还原反应:vvv-v,

固态反应:vv-v-,

脱水:v-v--,

脱溶剂化:v-v--,

化学吸附:-v--v,

聚合:-v-v-,

树脂预固化:-v-v-,

燃烧:-vv--,

爆炸反应:-vv--,

液固异相反应:vv-v-,

催化反应:-v-v-

把DTA谱或DSC谱与TG谱联立解析,往往有助于对峰的指认和归属。因为前者指示的是引发试样吸放热热效应性质的变化因素,而TG揭示的是引发试样重量变化的因素。联立两者可以推断出哪些是因质量改变(如挥发、分解)而引发的热效应,哪些是因内能改变(如熔融、结晶)而引发的热效应。

DTA谱上应该有表示:向下的是放热或者吸热;你没有交代出来。

根据整体关系,暂且判断向下是放热。

160多度的放热峰,因为是在恒重下出现的,就在上面表中热重谱恒重和差热分析谱放热中去找,联立解析判断。我初步判断是结晶或晶型转变,你可以根据你们的对样品的预先研究和文献调研情况,做出你们的判断。

一百八九十度开始的、三百六七十度结束的放热峰,因为对应于失重,故应该是热分解。

三百四五十度开始就有缓慢地氧化、增重。也可能样品中存在有杂质,最后这个杂质在更高温度时被氧化分解。

热重分析中mass是物质所具有的质量。根据查询相关资料信息,单位物质的量的物质所具有的质量,称为摩尔质量(molarmass),用符号M表示。当物质的质量以克为单位时,摩尔质量的单位为g/mol,在数值上等于该物质的相对原子质量或相对分子质量。

热分析法分类及特点:

一、热重分析法:热重分析法(TGA)是在程序控制温度下,测量物质质量与温度关系的方法。特点是能准确测量物质质量变化及发生变化的温度,样品用量少,比通常干燥失重法测定速度快。适用于贵重药物或在空气中易氧化药物的干燥失重测定,还可用于药物稳定性考察。

二、差示热分析法:差示热分析法(DTA)是基于物质在加热过程中必定同时伴随着发生吸热或放热,测量供试品与参比物之间温差随温度或时间的变化。可用来测定药物熔点,或对药物进行鉴定并估测药物纯度。

三、差示扫描量热法:差示扫描量热法(DSC)是在分析过程中维持样品与参比物质温度相同,测定维持相同温度条件所需能量差。可用来鉴别药物、检查药物中杂质

以上就是关于如何分析热重曲线图全部的内容,包括:如何分析热重曲线图、影响差热热重热分析测量的实验因素与实验数据的处理、热重分析测试影响因素浅析等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10083415.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存