bi 是工程师。bi工程师,主要是做数据分析,数据仓库以及相关报表,对一些数据进行处理,对数据库要有比较深入的了解。
商业智能
通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商等来自企业所处行业和竞争对手的数据以及来自企业所处的其他外部环境中的各种数据。
而商业智能能够辅助的业务经营决策,既可以是 *** 作层的,也可以是战术层和战略层的决策。为了将数据转化为知识,需要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是数据仓库、OLAP和数据挖掘等技术的综合运用。
可以认为,商业智能是对商业信息的搜集、管理和分析过程,目的是使企业的各级决策者获得知识或洞察力,促使他们做出对企业更有利的决策。商业智能一般由数据仓库、联机分析处理、数据挖掘、数据备份和恢复等部分组成。
商业智能的实现涉及到软件、硬件、咨询服务及应用,其基本体系结构包括数据仓库、联机分析处理和数据挖掘三个部分。
数据库开发是指从事针对数据库方面的开发工作,主要是存储过程等的开发,也有部分是混杂部分简单程序的。但主要任务都是通过sql来实现的,高端点,会包括一些数据模型设计等工作。
bi是指数据分析,其实是数据库开发的一类,但从深度上会更深入一些,技术上要额外考虑大数据处理,要对数据库优化有一定理解,如果不懂sql优化的话,基本上很难完成大数据分析的任务的。
另外除数据库技术以外,做BI还有有相关的业务理念,比如说通过这些数据,能获得哪些信息?这是需要经验和想法的事情。
总的来说,bi属于数据库开发中的一类,但有很高的专业性。
国外BI:SAS BI、IBM的cognos、Oracle BIEE、SAP BO、Power-BI、Informatica、Arcplan、QlikView、Tableau等等;
国内BI:BDP商业数据平台、smartbi、用友华表、帆软、润乾报表,永洪科技等。
国外BI
1、IBM Cognos
IBM提供了全面的商业智能解决方案,包括前端工具、在线分析处理工具、数据挖掘工具、企业数据仓库、数据仓库管理器和数据预处理工具等。结合行业用户的业务需要,IBM还向用户提供面向政府、电力、金融、电信、石油、医疗行业的商业智能解决方案。IBM Cognos商业智能解决方案基于已经验证的技术平台而构建的,旨在针对最广泛的部署进行无缝升级和经济有效的扩展,能满足各类型用户的不同信息需求。传统BI工具中最被广泛使用的,已被IBM收购。拥有强大的数据库平台、在数据管理、数据整合以及中间件领域专业功底深厚。偏 *** 作型,手工建模,一旦需求变化需要 重新建模,学习要求较高。
(信息来自百度百科)
2、Qracle BIEE
BIEE 现在oracle下是最强力的bi分析工具,最早进入中国,支持简单方便的集群,前端及中后端设计功能强大,前端开发灵活易用,只要开发公司投入足够强力的技术人员,工程期规划合理,基本上可以实现从上层到中下层的所有的需求,界面还算美观,不过弱点就是说做一些中国式的报表工量较大,还有一些不足的地方,但是oracle不断的发展和升级,产品正在变得越来越好。其他方面是实施建议找一个真的很负责任的公司和实施团队实施 。全看实施团队的技术能力。
3、SAP BO
SAP BO公司收购的一款BI工具,产品运作模式是结合SAP的ERP系统,所以整合其他数据库或系统并不占优势,属于重型BI,使用要求较高,升级困难。无功无过,在BI产品不具特色,同SAP一样,与Oracle的产品线紧密绑在一起。貌似国外厂商都是捆绑型卖整体方案。
4、Qlikview
Qlikview的主要特点是开发和使用简单,但是和Tableau 、FineBI相比, *** 作性能差一些,总的来说,它可以让自助数据分析和所有信息都有一个灵活的直观的展现。Qlikview通过AQL架构提供灵活、强大的分析能力时,AQL架构改变了需要OLAP立方体的需求。Qlikview的缺陷也很明显,受限于用户数(也就是说价格)和设计报表的复杂程度,只能用于少数几个管理层人员,广大的中层干部的报表问题其实没有解决。
5、Tableau
定位是一款数据可视化工具,可视化功能很强大,对计算机的硬件要求较高,部署较复杂,目前移动端只支持IOS系统。 *** 作简单,用户只需要简单配置,拖拖拽拽,就可以做出数据分析。整体来看,工具挺不错的,成本低,可以快速上手;功能挺强大的,可视化效果真心不错,也有数据钻取、动态的功能效果,Tableau虽然具备强悍的分析功能,但是数据抓取功能很弱,数据处理能力差,需要实现准备好数据,所以可以认为是面向数据分析师的前端工具。另外Tabluea真心不便宜,最便宜的一年要999刀。
国内BI
1、BDP商业数据平台
BDP商业数据平台旨在帮助企业快速完成多数据整合,建立统一数据口径,支持自助式数据准备(ETL),并提供灵活、易用、高效可视化探索式分析能力,帮助企业构建贴合自身业务的企业洞察,并将数据决策快速覆盖各层员工及应用场景。
BDP可以灵活接入与同步多种数据源,包括各类数据库连接、OpenAPI以及各种SaaS平台API,满足企业多种多样的业务场景、亿行数据秒反应,快速实现数据清洗、整合、加载,通过拖拽即可可视化分析,支持近30种图表类型和12种自带配色方案,让数据更加直观、美观。
BDP商业数据平台为企业提供的核心价值在于用直观、多维、实时的方式展示和分析数据,并可在APP实时查看和分享,全面激活企业内部数据,用数据驱动业绩,适应快速变化的市场。海致帮助各类型企业迅速搭建贴合业务的数据分析平台,目前服务的客户涵盖互联网、零售快消、物流、O2O、医疗/教育SEM等多个行业。
(信息来自BDP官网)
2、FineBI
FineBI是几年前帆软公司推出的,在国内口碑和发展还行。通过傻瓜式 *** 作,用户只需在Dashboard中简单拖拽 *** 作,便能制作出丰富多样的数据可视化信息,进行数据钻取、联动和过滤等 *** 作,自由分析数据。FineBI面向企业IT部门、业务人员,提供企业级管控下的业务人员自助式数据分析,向下帮助IT做好数据管控,向上充分利用底层数据,支撑前端业务数据应用。数据分析功能全面实用,但中规中矩,没有那么多突出亮点。帆软旗下的自助性BI产品,轻量化的BI工具,部署方便,走多维分析方向。后期采用jar包升级换代,维护方便,最具性价比。
3、永洪BI
敏捷BI软件,产品稳定性较高。利用sql处理数据,不支持程序接口,实施交由第三方外包。永洪的技术主要分为大数据和可视化两点。在大数据方面,通过列存储、分布式计算、内存计算、分布式通讯等技术,永洪自主研发了高性能的大数据计算引擎,作为分析用的数据集市,可实现百亿级数据在秒级时间内完成计算。在可视化方面,永洪将复杂的多维分析功能隐藏在背后,在前端通过点击和拖拽的简单可视化 *** 作实现各种复杂的分析过程。
随着近几年大数据、数据分析技术越来越热门,Tableau、Qlikview包括国内的BDP商业数据平台等一些轻型敏捷BI,由于简单易用,可视化程度高、使用门槛低的优势,逐渐被企业认可。
对于BI产品,我了解的就这么多啦,希望能帮到你吧~~~
BI是建立在数据仓库技术的基础上的
数据仓库的架构中一般会分为STG层 ODS层 BL层 DM层
STG层存放的是从异构的源系统集成过来的表, ODS是经过稍微处理为了适应后续 *** 作的一个数据集成的中心
BL层 存放的是维度信息和基本的事实表
DM层 存放的是支撑报表出数的一些综合事实表
以上这些表之间的关联和处理都是基于满足业务需求的前提,所以如果单纯的IT的角度来说的话,会有IT方案或者数据流程图,能一目了然的知道他们的关联关系
如果你是业务的话,那么每个维表之间 或者维表与事实表之间 都是有代理键和维ID作为关联
建议你多了解下数据仓库的架构,以及实际的业务方案因为你的这个问题是一个很泛的问题没法具体给你回答
如果需要的话 我可以给你提供一个例子
很多厂商活跃在商业智能(下面简称BI)领域。事实上,能够满足用户需要的BI产品和方案必须建立在稳定、整合的平台之上,该平台需要提供用户管理、安全性控制、连接数据源以及访问、分析和共享信息的功能。BI平台的标准化也非常重要,因为这关系到与企业多种应用系统的兼容问题,解决不了兼容问题,BI系统就不能发挥出应有效果。这里我们通过对一个实验室的BI系统模型(我们将其称为D系统)进行功能解剖,来介绍BI系统。
D系统是一个面向终端使用者,直接访问业务数据,能够使管理者从各个角度出发分析利用商业数据,及时地掌握组织的运营现状,作出科学的经营决策的系统。D系统可实现从简单的标准报表浏览到高级的数据分析,满足组织内部人员的需求。D系统涵盖了常规意义上商业智能(BI)系统的功能,主要构架包括以下几个方面。 1、读取数据
D系统可读取多种格式(如Excel、Access、以Tab分割的txt和固定长的txt等)的文件,同时可读取关系型数据库(对应ODBC)中的数据。在读取文本和数据的基础上,D系统还可以完成:
连接文本 把2个CSV文件中的共同项目作为键(Key),将所需的数据合并到一个文件,这样可以象 *** 作数据库一样方便,但无须用户编程即可实现。
设置项目类型 作为数据的项目类型,除按钮(button)(文字项目)、数值项目以外,还可以设置日期表示形式的日期数据项目、多媒体项目和不需要生成按钮但在列表显示中能够浏览的参照项目。
期间设置 日期项目数据可以根据年度或季度等组合后生成新下午或时间带等组合后生成新的时间项目。
设置等级 对于数值项目,可以任意设置等级,生成与之相对应的按钮。例如,可以生成与年龄项目中的20岁年龄段、30岁年龄段的等级相对应的按钮。
2、分析功能
关联/限定 关联分析主要用于发现不同事件之间的关联性,即一个事件发生的同时,另一个事件也经常发生。关联分析的重点在于快速发现那些有实用价值的关联发生的事件。其主要依据是,事件发生的概率和条件概率应该符合一定的统计意义。D系统把这种关联的分析设计成按钮的形式,通过选择有/无关联,同时/相反的关联。对于结构化的数据,以客户的购买习惯数据为例,利用D系统的关联分析,可以发现客户的关联购买需要。例如,一个开设储蓄账户的客户很可能同时进行债券交易和股票交易。利用这种知识可以采取积极的营销策略,扩展客户购买的产品范围,吸引更多的客户。
显示数值比例/指示显示顺序 D系统可使数值项目的数据之间的比例关系通过按钮的大小来呈现,并显示其构成比,还可以改变数值项目数据的排列顺序等。选择按钮后,动态显示不断发生变化。这样能够获得直观的数据比较效果,并能够凸显差异,便于深入分析现象背后的本质。
监视功能 预先设置条件,使符合条件的按钮显示报警(红)、注意(黄)信号,使问题所在一目了然。比如说:上季度营业额少于100万元的店警告(**标出),少于50万元的报警(红色标出)。执行后,D系统就把以店名命名的按钮用相应的颜色表示出来。
按钮增值功能 可将多个按钮组合,形成新的按钮。比如:把4月、5月、6月三个按钮组合后得到新的按钮第2季度。
记录选择功能 从大量数据中选择按钮,取出必要的数据。挑出来的数据可重新构成同样的 *** 作环境。这样用户可以把精力集中在所关心的数据上。
多媒体情报表示功能 由数码相机拍摄的照片或影像文件、通过扫描仪输入的图形等多媒体文件、文字处理或者电子表格软件做成的报告书、HTML等标准形式保存的文件等,可以通过按钮进行查找。
分割按钮功能 在分割特定按钮类的情况下,只需切换被分割的个别按钮,便可连接不断实行已登录过的定型处理。
程序调用功能 把通过按钮查找抽取出的数据,传给其他的软件或用户原有的程序,并执行这些程序。
查找按钮名称功能 通过按钮名查找按钮,可以指定精确和模糊两种查找方法。另外,其他的按钮类也可以对查找结果相关的数据进行限定。
3、丰富的画面
列表画面 可以用and/or改变查找条件,可以进行统计/排序。统计对象只针对数值项目,统计方法分三种:合计、件数、平均,而且可以按照12种方式改变数值的显示格式。
视图画面 提供切换视角和变换视图功能,通过变换与设置条件相应的数值(单元格)的颜色表示强调。依次变换视角可进行多方面的数据分析。视图的统计对象只针对数值项目,统计方法有合计、平均、构成比(纵向、横向)、累计(纵向、横向)、加权平均、最大、最小、最新和绝对值等12种。
数值项目切换 通过按钮类的阶层化(行和列最多可分别设置8层),由整体到局部,一边分层向下挖掘,一边分析数据,可以更加明确探讨问题所在。
图表画面 D系统使用自己开发的图形库,提供柱形图、折线图、饼图、面积图、柱形+折线五大类35种。在图表画面上,也可以像在阶层视图一样,自由地对层次进行挖掘和返回等 *** 作。
4、数据输出功能
打印统计列表和图表画面等,可将统计分析好的数据输出给其他的应用程序使用,或者以HTML格式保存。
5、定型处理
所需要的输出被显示出来时,进行定型登录,可以自动生成定型处理按钮。以后,只需按此按钮,即使很复杂的 *** 作,也都可以将所要的列表、视图和图表显示出来。 商业智能系统可辅助建立信息中心,如产生各种工作报表和分析报表。用作以下分析:
销售分析
主要分析各项销售指标,例如毛利、毛利率、交叉比、销进比、盈利能力、周转率、同比、环比等等;而分析维又可从管理架构、类别品牌、日期、时段等角度观察,这些分析维又采用多级钻取,从而获得相当透彻的分析思路;同时根据海量数据产生预测信息、报警信息等分析数据;还可根据各种销售指标产生新的透视表。
商品分析
商品分析的主要数据来自销售数据和商品基础数据,从而产生以分析结构为主线的分析思路。主要分析数据有商品的类别结构、品牌结构、价格结构、毛利结构、结算方式结构、产地结构等,从而产生商品广度、商品深度、商品淘汰率、商品引进率、商品置换率、重点商品、畅销商品、滞销商品、季节商品等多种指标。通过D系统对这些指标的分析来指导企业商品结构的调整,加强所营商品的竞争能力和合理配置。
人员分析
通过D系统对公司的人员指标进行分析,特别是对销售人员指标(销售指标为主,毛利指标、换购销商品数、代销商品数、资金占用、资金周转等)的分析,以达到考核员工业绩,提高员工积极性,并为人力资源的合理利用提供科学依据。主要分析的主题有,员工的人员构成、销售人员的人均销售额、对于销售的个人销售业绩、各管理架构的人均销售额、毛利贡献、采购人员分管商品的进货多少、购销代销的比例、引进的商品销量情况等等。
BI是一种运用了数据仓库,在线分析和数据挖掘等技术来处理和分析数据的崭新技术,目的是为企业决策者提供决策支持。
数据查询是最简单的 BI 应用,最高层面的工具就是支持浏览器的全拉拽界面,把查询条件自己来组织,完全释放了数据查询的灵活性,如Yonghong Z-Suite 的数据查询界面 Query Editor。
允许用户通过纯浏览器界面,以鼠标拖拽 *** 作定义数据查询要素,并以报表和图表等多种方式展现数据。但是基本的底层还是基于当前应用的数据库SQL查询。
BI 应用模式相关概览:
数据可视化(Visualization) 数据可视化应用致力于将信息以尽可能多的形式展现出来,目的是使决策者通过图形这种直观的表现方式迅速获得信息中蕴藏的知识,如趋势、分布、密度等要素。MapInfo 率先提出了 Location Intelligence 概念。
依托于地理信息系统,展现各地区的属性值,例如人口密度,工业产值,人均医院数量等等,这种可视化应用部分与 BI 数据可视化应用重合,并形成有力补充,有时可以在一个项目中互相搭配。
经过几年的积累,大部分中大型的企事业单位已经建立了比较完善的CRM、ERP、OA等基础信息化系统。这些系统的统一特点都是:通过业务人员或者用户的 *** 作,最终对数据库进行增加、修改、删除等 *** 作。上述系统可统一称为OLTP(Online Transaction Process,在线事务处理),指的就是系统运行了一段时间以后,必然帮助企事业单位收集大量的历史数据。但是,在数据库中分散、独立存在的大量数据对于业务人员来说,只是一些无法看懂的天书。业务人员所需要的是信息,是他们能够看懂、理解并从中受益的抽象信息。此时,如何把数据转化为信息,使得业务人员(包括管理者)能够充分掌握、利用这些信息,并且辅助决策,就是商业智能主要解决的问题。如何把数据库中存在的数据转变为业务人员需要的信息大部分的答案是报表系统。简单说,报表系统已经可以称作是BI了,它是BI的低端实现。
国外的企业,大部分已经进入了中端BI,叫做数据分析。有一些企业已经开始进入高端BI,叫做数据挖掘。而我国的企业,大部分还停留在报表阶段。
数据报表不可取代
传统的报表系统技术上已经相当成熟,大家熟悉的Excel、水晶报表、Reporting Service等都已经被广泛使用。但是,随着数据的增多,需求的提高,传统报表系统面临的挑战也越来越多。
1 数据太多,信息太少
密密麻麻的表格堆砌了大量数据,到底有多少业务人员仔细看每一个数据到底这些数据代表了什么信息、什么趋势级别越高的领导,越需要简明的信息。如果我是董事长,我可能只需要一句话:我们的情况是好、中还是差
2 难以交互分析、了解各种组合
定制好的报表过于死板。例如,我们可以在一张表中列出不同地区、不同产品的销量,另一张表中列出不同地区、不同年龄段顾客的销量。但是,这两张表无法回答诸如“华北地区中青年顾客购买数码相机类型产品的情况”等问题。业务问题经常需要多个角度的交互分析。
3 难以挖掘出潜在的规则
报表系统列出的往往是表面上的数据信息,但是海量数据深处潜在含有哪些规则呢什么客户对我们价值最大,产品之间相互关联的程度如何越是深层的规则,对于决策支持的价值越大,但是,也越难挖掘出来。
4 难以追溯历史,数据形成孤岛
业务系统很多,数据存在于不同地方。太旧的数据往往被业务系统备份出去,导致宏观分析、长期历史分析难度很大。
因此,随着时代的发展,传统报表系统已经不能满足日益增长的业务需求了,企业期待着新的技术。数据分析和数据挖掘的时代正在来临。值得注意的是,数据分析和数据挖掘系统的目的是带给我们更多的决策支持价值,并不是取代数据报表。报表系统依然有其不可取代的优势,并且将会长期与数据分析、挖掘系统一起并存下去。
八维以上的数据分析
如果说OLTP侧重于对数据库进行增加、修改、删除等日常事务 *** 作,OLAP(Online Analytics Process,在线分析系统)则侧重于针对宏观问题,全面分析数据,获得有价值的信息。
为了达到OLAP的目的,传统的关系型数据库已经不够了,需要一种新的技术叫做多维数据库。
多维数据库的概念并不复杂。举一个例子,我们想描述2003年4月份可乐在北部地区销售额10万元时,牵扯到几个角度:时间、产品、地区。这些叫做维度。至于销售额,叫做度量值。当然,还有成本、利润等。
除了时间、产品和地区,我们还可以有很多维度,例如客户的性别、职业、销售部门、促销方式等等。实际上,使用中的多维数据库可能是一个8维或者15维的立方体。
虽然结构上15维的立方体很复杂,但是概念上非常简单。
数据分析系统的总体架构分为四个部分:源系统、数据仓库、多维数据库、客户端。
·源系统:包括现有的所有OLTP系统,搭建BI系统并不需要更改现有系统。
·数据仓库:数据大集中,通过数据抽取,把数据从源系统源源不断地抽取出来,可能每天一次,或者每3个小时一次,当然是自动的。数据仓库依然建立在关系型数据库上,往往符合叫做“星型结构”的模型。
·多维数据库:数据仓库的数据经过多维建模,形成了立方体结构。每一个立方体描述了一个业务主题,例如销售、库存或者财务。
·客户端:好的客户端软件可以把多维立方体中的信息丰富多彩地展现给用户。
数据分析案例:
在实际的案例中,我们利用Oracle9i搭建了数据仓库,Microsoft Analysis Service 2000搭建了多维数据库,ProClarity 60 作为客户端分析软件。
分解树好像一个组织图。分解树在回答以下问题时很最高的销售额
·在特定的产品种类内,各种产品间的销售额分布如何
·哪个销售人员完成了最高百分比的销售额
在图1中,可以对PC机在各个地域的销售额和所占百分比一目了然。任意一层分解树都可以根据不同维度随意展开。在该分解树中,在大区这一层是按国家展开,在国家这一层是按产品分类展开。
投影图(图3)使用散点图的格式,显示两个或三个度量值之间的关系。数据点的集中预示两个变量之间存在强的相关关系,而稀疏分布的数据点可能显示不明显的关系。
投影图很适合分析大量的数据。在显示因果关系方面有明显效果,比如例外的数据点就可以考虑进一步研究,因为它们落在“正常”的点群范围之外。
数据挖掘看穿你的需求
广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。
以上就是关于bi是什么职位呀啊全部的内容,包括:bi是什么职位呀啊、oracle数据库开发和做BI 这两个是一回事吗、最近公司要做BI,想购买一套BI平台,不知道该选哪一个,目前想比较下国产思迈特以及oracle biee的平台等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)