数据库实验总结

数据库实验总结,第1张

数据库实验总结一

试验内容

1、 数据表的建立

基本表《简单的》带有主键

带有外码约束的(外码来自其他表或者本表)

2、 数据表的修改

添加删除列

修改列属性类型

添加删除约束(约束名)

元组的添加,修改,删除

删除数据表

试验过程

1、create table student

(

sno char(9) primary key , /sno是主码 列级完整性约束条件/

sname char(20) unique, /sname取唯一值/

ssex char(2),

sage smallint, /类型为smallint/

sdept char(20) /所在系/

);

create table course

(

cno char(4) primary key, /列级完整性约束条件,cno是主码/

cname char(40),

cpno char(4), /cpno的含义是先行课/

ccredit smallint,

foreign key (cpno) references course(cno)

/表级完整性约束条件,cpno是外码,被参照表是course,被参照列是cno/

);

create table sc

(

sno char(9),

cno char(4),

grade smallint,

primary key (sno,cno),

/主码有两个属性构成,必须作为表级完整性进行定义/

foreign key (sno) references student(sno),

/表级完整性约束条件,sno是外码,被参照表是student/

foreign key (cno) references course(cno),

/表级完整性约束条件,cno是外码,被参照表示course/

);

例1、create table s

(

cno varchar(3), /变长的字符串,输入2个字符就是两个字符不会补空格/

sname varchar(20),

status int,

city varchar(20),

constraint pk_sno primary key(sno), /约束条件的名字为pk_sno/

);

create table p

(

pno varchar(3),

pname varchar(20),

color varchar(3),

weight int,

constraint pk_pno primary key (pno), /约束条件的名字是pk_pno/

);

create table j

(

jno varchar(3),

jname varchar(20),

city varchar(20),

constraint pk_jno primary key(jno) /约束条件的名字为pk_jno/

);

例2、create table spj

(

sno varchar(3), /第一个表中的主码/

pno varchar(3),

jno varchar(3),

qty int, /数量/

constraint pk_spj primary key(sno,pno,jno), /主码由3个属性组成/

foreign key(sno) references s(sno),

/表级完整性约束条件,sno是外码,被参照表是s/

foreign key(pno) references p(pno),

/表级完整性约束条件,pno是外码,被参照表是p/

foreign key(jno) references j(jno),

/表级完整性约束条件,jno是外码,被参照表是j/

);

2、数据表的更改

在s表中添加一个concat 列

alter table s add concat varchar(20)

在s表中删除concat 列

alter table s drop column concat

更改s表 concat列的属性 把长度由20改为30

alter table s alter column concat varchar(30)

**** 名字为concat 修改属性为唯一的 属性名为con_concat

alter table s add constraint con_concat unique(concat)

删除约束关系con_concat

alter table s drop constraint con_concat

/插入一个元组/

insert into s valus(‘s1’,’精益’,20,’天津’) /20不能写成’20’/

试验中的问题的排除与总结:

1、在创建spj时

有三个实体所以从3个实体中取主码,还有一个数量属性也要写上

主码由那3个主码确定

2、更改一个数据库中数据表时一定要先使该数据库处于正在使用状态

3、constraint

是可选关键字,表示 primary key、not null、unique、foreign key 或 check 约束定义的开始。约束是特殊属性,用于强制数据完整性并可以为表及其列创建索引

4、--go可以不加但是要注意顺序 注:go --注释 提示错误

5、注意添加一个空元素用 null

附 sql备份

--创建一个数据库 student

create database student

go

--在数据库student中创建表student course sc 注意顺序

use student

----------------------------------------------------------------

create table student

(

sno char(9) primary key, /sno是主码 列级完整性约束条件/

sname char(10) unique, /sname取唯一值/

ssex char(2),

sage smallint, /类型为smallint/

sdept char(20) /所在系/

); /;要加/

-----------

数据库实验总结二

我在sql server 索引基础知识系列中,第一篇就讲了记录数据的基本格式。那里主要讲解的是,数据库的最小读存单元:数据页。一个数据页是8k大小。

对于数据库来说,它不会每次有一个数据页变化后,就存到硬盘。而是变化达到一定数量级后才会作这个 *** 作。 这时候,数据库并不是以数据页来作为 *** 作单元,而是以64k的数据(8个数据页,一个区)作为 *** 作单元。

区是管理空间的基本单位。一个区是八个物理上连续的页(即 64 kb)。这意味着 sql server 数据库中每 mb 有 16 个区。

为了使空间分配更有效,sql server 不会将所有区分配给包含少量数据的表。sql server 有两种类型的区:

统一区,由单个对象所有。区中的所有 8 页只能由所属对象使用。

混合区,最多可由八个对象共享。区中八页的每页可由不同的对象所有。

通常从混合区向新表或索引分配页。当表或索引增长到 8 页时,将变成使用统一区进行后续分配。如果对现有表创建索引,并且该表包含的行足以在索引中生成 8 页,则对该索引的所有分配都使用统一区进行。

为何会这样呢

其实很简单:

读或写 8kb 的时间与读或写 64 kb的时间几乎相同。

在 8 kb 到 64 kb 范围之内,单个磁盘 i/o 传输 *** 作所花的时间主要是磁盘取数臂和读/写磁头运动的时间。

因此,从数学上来讲,当需要传输 64 kb 以上的 sql 数据时,

尽可能地执行 64 kb 磁盘传输是有益的,即分成数个64k的 *** 作。

因为 64 kb 传输基本上与 8 kb 传输一样快,而每次传输的 sql server 数据是 8 kb 传输的 8 倍。

我们通过一个实例来看 有and *** 作符时候的最常见的一种情况。我们有下面一个表,

create table [dbo][member]( [member_no] [dbo][numeric_id] identity(1,1) not null, [lastname] [dbo][shortstring] not null, [firstname] [dbo][shortstring] not null, [middleinitial] [dbo][letter] null, [street] [dbo][shortstring] not null, [city] [dbo][shortstring] not null, [state_prov] [dbo][statecode] not null, [country] [dbo][countrycode] not null, [mail_code] [dbo][mailcode] not null, [phone_no] [dbo][phonenumber] null, [photograph] [image] null, [issue_dt] [datetime] not null default (getdate()), [expr_dt] [datetime] not null default (dateadd(year,1,getdate())), [region_no] [dbo][numeric_id] not null, [corp_no] [dbo][numeric_id] null, [prev_balance] [money] null default (0), [curr_balance] [money] null default (0), [member_code] [dbo][status_code] not null default (' '))

这个表具备下面的四个索引:

索引名 细节 索引的列

member_corporation_link nonclustered located on primary corp_no

member_ident clustered, unique, primary key located on primary member_no

member_region_link nonclustered located on primary region_no

memberfirstname nonclustered located on primary firstname

当我们执行下面的sql查询时候,

select mmember_no, mfirstname, mregion_nofrom dbomember as mwhere mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000go

sql server 会根据索引方式,优化成下面方式来执行。

select amember_no,afirstname,bregion_nofrom(select mmember_no, mfirstname from dbomember as m where mfirstname like 'k%' and mmember_no < 5000) a , -- 这个查询可以直接使用 memberfirstname 非聚集索引,而且这个非聚集索引覆盖了所有查询列-- 实际执行时,只需要 逻辑读取 3 次

(select mmember_no, mregion_no from dbomember as mwhere mregion_no > 6) b

-- 这个查询可以直接使用 member_region_link 非聚集索引,而且这个非聚集索引覆盖了所有查询列-- 实际执行时,只需要 逻辑读取 10 次

where amember_no = bmember_no

不信,你可以看这两个sql 的执行计划,以及逻辑读信息,都是一样的。

其实上面的sql,如果优化成下面的方式,实际的逻辑读消耗也是一样的。为何sql server 不会优化成下面的方式。是因为 and *** 作符优化的另外一个原则。

1/26 的数据和 1/6 的数据找交集的速度要比 1/52 的数据和 1/3 的数据找交集速度要慢。

select amember_no,afirstname,bregion_nofrom(select mmember_no, mfirstname from dbomember as mwhere mfirstname like 'k%' -- 1/26 数据) a,

(select mmember_no, mregion_no from dbomember as mwhere mregion_no > 6 and mmember_no < 5000-- 1/3 1/ 2 数据) bwhere amember_no = bmember_no

当然,我们要学习sql 如何优化的话,就会用到查询语句中的一个功能,指定查询使用哪个索引来进行。

比如下面的查询语句

select mmember_no, mfirstname, mregion_nofrom dbomember as m with (index (0))where mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000go

select mmember_no, mfirstname, mregion_nofrom dbomember as m with (index (1))where mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000goselect mmember_no, mfirstname, mregion_nofrom dbomember as m with (index (membercovering3))where mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000goselect mmember_no, mfirstname, mregion_nofrom dbomember as m with (index (memberfirstname, member_region_link))where mfirstname like 'k%' and mregion_no > 6 and mmember_no < 5000go

这里 index 计算符可以是 0 ,1, 指定的一个或者多个索引名字。对于 0 ,1 的意义如下:

如果存在聚集索引,则 index(0) 强制执行聚集索引扫描,index(1) 强制执行聚集索引扫描或查找(使用性能最高的一种)。

如果不存在聚集索引,则 index(0) 强制执行表扫描,index(1) 被解释为错误。

总结知识点:

简单来说,我们可以这么理解:sql server 对于每一条查询语句。会根据实际索引情况(sysindexes 系统表中存储这些信息),分析每种组合可能的成本。然后选择它认为成本最小的一种。作为它实际执行的计划。

成本代价计算的一个主要组成部分是逻辑i/o的数量,特别是对于单表的查询。

and *** 作要满足所有条件,这样,经常会要求对几个数据集作交集。数据集越小,数据集的交集计算越节省成本。

的项目中,竟然出现了滥用聚集索引的问题。看来没有培训最最基础的索引的意义,代价,使用场景,是一个非常大的失误。这篇博客就是从这个角度来罗列索引的基础知识。

使用索引的意义

索引在数据库中的作用类似于目录在书籍中的作用,用来提高查找信息的速度。

使用索引查找数据,无需对整表进行扫描,可以快速找到所需数据。

使用索引的代价

索引需要占用数据表以外的物理存储空间。

创建索引和维护索引要花费一定的时间。

当对表进行更新 *** 作时,索引需要被重建,这样降低了数据的维护速度。

创建索引的列

主键

外键或在表联接 *** 作中经常用到的列

在经常查询的字段上最好建立索引

不创建索引的列

很少在查询中被引用

包含较少的惟一值

定义为 text、ntext 或者 image 数据类型的列

heaps是staging data的很好选择,当它没有任何index时

excellent for high performance data loading (parallel bulk load and parallel index creation after load)

excellent as a partition to a partitioned view or a partitioned table

聚集索引提高性能的方法,在前面几篇博客中分别提到过,下面只是一个简单的大纲,细节请参看前面几篇博客。

何时创建聚集索引

clustered index会提高大多数table的性能,尤其是当它满足以下条件时:

独特, 狭窄, 静止: 最重要的条件

持续增长的,最好是只向上增加。例如:

identity

date, identity

guid (only when using newsequentialid() function)

聚集索引唯一性(独特型的问题)

由于聚集索引的b+树结构的叶子节点必须指向具体数据。如果你要建立聚集索引的列不唯一,并且你指定的创建的聚集索引是非唯一的聚集索引,则会有以下情况:

如果未使用 unique 属性创建聚集索引,数据库引擎 将向表自动添加一个四字节 uniqueifier 列。必要时,数据库引擎 将向行自动添加一个 uniqueifier 值,使每个键唯一。此列和列值供内部使用,用户不能查看或访问。

为数据是要求每5分种的精确度

所以我想要是取数据每次都进行Group By的话数据访问大可能会有问题

然后我就多设计了一个统计表

VideoViewGroupBy

VideoID DayCount WeekCount MonthCount YearCount AllCount

如果在一个服务器上,可以用语句实现。

insert

into

database1dbotable1(a1,a2)

select

b1,b2

from

database2dbotable2

若在不同服务器上,可以用数据库的导出功能。

以上就是关于数据库实验总结全部的内容,包括:数据库实验总结、点击的更新,数据库要怎么设计,如何更新与统计、SQL如何将两个不同数据库同一张表的数据同步更新(sqlserver把一个表的数据更新到另一个表)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10155804.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存