分布式数据库系统分布式数据库系统有两种:一种是物理上分布的,但逻辑上却是集中的。这种分布式数据库只适宜用途比较单一的、不大的单位或部门。另一种分布式数据库系统在物理上和逻辑上都是分布的,也就是所谓联邦式分布数据库系统。由于组成联邦的各个子数据库系统是相对“自治”的,这种系统可以容纳多种不同用途的、差异较大的数据库,比较适宜于大范围内数据库的集成。
----- ----
分布式数据库系统(DDBS)包含分布式数据库管理系统(DDBMS)和分布式数据库(DDB)。在分布式数据库系统中,一个应用程序可以对数据库进行透明 *** 作,数据库中的数据分别在不同的局部数据库中存储、由不同的 DBMS进行管理、在不同的机器上运行、由不同的 *** 作系统支持、被不同的通信网络连接在一起。
一个分布式数据库在逻辑上是一个统一的整体,在物理上则是分别存储在不同的物理节点上。一个应用程序通过网络的连接可以访问分布在不同地理位置的数据库。它的分布性表现在数据库中的数据不是存储在同一场地。 更确切地讲,不存储在同一计算机的存储设备上。 这就是与集中式数据库的区别。从用户的角度看,一个分布式数据库系统在逻辑上和集中式数据库系统一样,用户可以在任何一个场地执行全局应用。就好那些数据是存储在同一台计算机上,有单个数据库管理系统(DBMS)管理一样,用户并没有什么感觉不一样。
分布式数据库系统是在集中式数据库系统的基础上发展起来的,是计算机技术和网络技术结合的产物。分布式数据库系统适合于单位分散的部门,允许各个部门将其常用的数据存储在本地,实施就地存放本地使用,从而提高响应速度,降低通信费用。分布式数据库系统与集中式数据库系统相比具有可扩展性,通过增加适当的数据冗余,提高系统的可靠性。在集中式数据库中,尽量减少冗余度是系统目标之一.其原因是,冗余数据浪费存储空间,而且容易造成各副本之间的不一致性.而为了保证数据的一致性,系统要付出一定的维护代价.减少冗余度的目标是用数据共享来达到的。而在分布式数据库中却希望增加冗余数据,在不同的场地存储同一数据的多个副本,其原因是:①.提高系统的可靠性、可用性当某一场地出现故障时,系统可以对另一场地上的相同副本进行 *** 作,不会因一处故障而造成整个系统的瘫痪。②.提高系统性能系统可以根据距离选择离用户最近的数据副本进行 *** 作,减少通信代价,改善整个系统的性能。
分布式数据库具有以下几个特点:
(1)、数据独立性与位置透明性。数据独立性是数据库方法追求的主要目标之一,分布透明性指用户不必关心数据的逻辑分区,不必关心数据物理位置分布的细节,也不必关心重复副本(冗余数据)的一致性问题,同时也不必关心局部场地上数据库支持哪种数据模型.分布透明性的优点是很明显的.有了分布透明性,用户的应用程序书写起来就如同数据没有分布一样.当数据从一个场地移到另一个场地时不必改写应用程序.当增加某些数据的重复副本时也不必改写应用程序.数据分布的信息由系统存储在数据字典中.用户对非本地数据的访问请求由系统根据数据字典予以解释、转换、传送.
(2)、集中和节点自治相结合。数据库是用户共享的资源.在集中式数据库中,为了保证数据库的安全性和完整性,对共享数据库的控制是集中的,并设有DBA负责监督和维护系统的正常运行.在分布式数据库中,数据的共享有两个层次:一是局部共享,即在局部数据库中存储局部场地上各用户的共享数据.这些数据是本场地用户常用的.二是全局共享,即在分布式数据库的各个场地也存储可供网中其它场地的用户共享的数据,支持系统中的全局应用.因此,相应的控制结构也具有两个层次:集中和自治.分布式数据库系统常常采用集中和自治相结合的控制结构,各局部的DBMS可以独立地管理局部数据库,具有自治的功能.同时,系统又设有集中控制机制,协调各局部DBMS的工作,执行全局应用。当然,不同的系统集中和自治的程度不尽相同.有些系统高度自治,连全局应用事务的协调也由局部DBMS、局部DBA共同承担而不要集中控制,不设全局DBA,有些系统则集中控制程度较高,场地自治功能较弱。
(3)、支持全局数据库的一致性和和可恢复性。分布式数据库中各局部数据库应满足集中式数据库的一致性、可串行性和可恢复性。除此以外还应保证数据库的全局一致性、并行 *** 作的可串行性和系统的全局可恢复性。这是因为全局应用要涉及两个以上结点的数据.因此在分布式数据库系统中一个业务可能由不同场地上的 多个 *** 作组成.例如, 银行转帐业务包括两个结点上的更新 *** 作。这样,当其中某一个结点出现故障 *** 作失败后如何使全局业务滚回呢?如何使另一个结点撤销已执行的 *** 作(若 *** 作已完成或完成一部分)或者不必再执行业务的其它 *** 作(若 *** 作尚没执行)?这些技术要比集中式数据库复杂和困难得多,分布式数据库系统必须解决这些问题.
(4)、复制透明性。用户不用关心数据库在网络中各个节点的复制情况,被复制的数据的更新都由系统自动完成。在分布式数据库系统中,可以把一个场地的数据复制到其他场地存放,应用程序可以使用复制到本地的数据在本地完成分布式 *** 作,避免通过网络传输数据,提高了系统的运行和查询效率。但是对于复制数据的更新 *** 作,就要涉及到对所有复制数据的更新。
(5)、易于扩展性。在大多数网络环境中,单个数据库服务器最终会不满足使用。如果服务器软件支持透明的水平扩展,那么就可以增加多个服务器来进一步分布数据和分担处理任务。
分布式数据库的优点:
(1)具有灵活的体系结构 。
(2)适应分布式的管理和控制机构。
(3)经济性能优越 。
(4)系统的可靠性高、可用性好 。
(5)局部应用的响应速度快。
(6)可扩展性好,易于集成现有系统。
分布式数据库的缺点:
(1)系统开销大,主要花在通信部分。
(2)复杂的存取结构,原来在集中式系统中有效存取数据的技术,在分成式系统中都不再适用。
(3)数据的安全生和保密性较难处理。
分布式数据库系统的目标
分布式数据库系统的目标,也就是研制分布式数据库系统的目的、动机,主要包括技术和组织两方面的目标.
1.适应部门分布的组织结构,降低费用。
使用数据库的单位在组织上常常是分布的(如分为部门、科室、车间等等),在地理上也是分布的.分布式数据库系统的结构符合部门分布的组织结构,允许各个部门对自己常用的数据存储在本地,在本地录入、查询、维护,实行局部控制.由于计算机资源靠近用户,因而可以降低通信代价,提高响应速度,使这些部门使用数据库更方便更经济。
2.提高系统的可靠性和可用性。
改善系统的可靠性和可用性是分布式数据库的主要目标.将数据分布于多个场地,并增加适当的冗余度可以提供更好的可靠性.一些可靠性要求较高的系统,这一点尤其重要.因为一个地出了故障不会引起整个系统崩溃.因为故障场地的用户可以通过其它场地进入系统.而其它场地的用户可以由系统自动选择存取路径,避开故障场地,利用其它数据副本执行 *** 作,不影响业务的正常运行.
3.充分利用数据库资源,提高现有集中式数据库的利用率
当在一个大企业或大部门中已建成了若干个数据库之后,为了利用相互的资源,为了开发全局应用,就要研制分布式数据库系统.这种情况可称为自底向上的建立分布式系统.这种方法虽然也要对各现存的局部数据库系统做某些改动、重构,但比起把这些数据库集中起来重建一个集中式数据库,则无论从经济上还是从组织上考虑,分布式数据库均是较好的选择.
4.逐步扩展处理能力和系统规模
当一个单位规模扩大要增加新的部门(如银行系统增加新的分行,工厂增加新的科室、车间)时,分布式数据库系统的结构为扩展系统的处理能力提供了较好的途径:在分布式数据库系统中增加一个新的结点.这样做比在集中式系统中扩大系统规模要方便、灵活、经济得多。
在集中式系统中为了扩大规模常用的方法有两种:一种是在开始设计时留有较大的余地.这容易造成浪费,而且由于预测困难,设计结果仍可能不适应情况的变化.另一种方法是系统升级,这会影响现有应用的正常运行.并且当升级涉及不兼容的硬件或系统软件有了重大修改而要相应地修改已开发的应用软件时,升级的代价就十分昂贵而常常使得升级的方法不可行.分布式数据库系统能方便地把一个新的结点纳入系统,不影响现有系统的结构和系统的正常运行,提供了逐渐扩展系统能力的较好途径,有时甚至是唯一的途径。
①数据库系统与应用 赵致格编著 清华大学出版社p 260
②数据库原理及应用 张晋连 编著 电子工业出版社P13
通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQLServer、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Aess等等数据库,这些数据库支持复杂的SQL *** 作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。
大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写 *** 作,从数据库是负责读 *** 作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。
NoSQL数据库大致分为5种类型
1、列族数据库:BigTable、HBase、Cassandra、AmazonSimpleDB、HadoopDB等,下面简单介绍几个
(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。
(2)HBase:ApacheHbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。
(3)AmazonSimpleDB:AmazonSimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项
(4)ApacheAumulo:ApacheAumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在ApacheHadoop、Zookeeper和Thrift技术之上。
(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。
(6)AzureTables:WindowsAzureTableStorageService为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和ManagedAPI访问。
2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个
(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。
(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。
(4)OracleNoSQLDatabase:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。
(5)OracleNoSQLDatabase:具备数据备份和分布式键值存储系统。
(6)Voldemort:具备数据备份和分布式键值存储系统。
(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。
3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个
(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。
(2)CounchDB:ApacheCounchDB是一个使用JSON的文档数据库,使用Javascript做MapRece查询,以及一个使用>
(3)Couchbase:NoSQL文档数据库基于JSON模型。
(4)RavenDB:RavenDB是一个基于NET语言的面向文档数据库。
(5)MarkLogic:MarkLogicNoSQL数据库用来存储基于XML和以文档为中心的信息,支持灵活的模式。
4、图数据库:Neo4J、InfoGrid、OrientDB、GraphDB,下面简单介绍几个
(1)Neo4j:Neo4j是一个图数据库;支持ACID事务(原子性、独立性、持久性和一致性)。
(2):一个图数据库用来维持和遍历对象间的关系,支持分布式数据存储。
(3):是结合使用了内存和磁盘,提供了高可扩展性,支持SPARQ、RDFS和Prolog推理。
5、内存数据网格:Hazelcast、OracleCoherence、TerracottaBigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面简单介绍几个
(1)Hazelcast:HazelcastCE是一个开源数据分布平台,它允许开发者在数据库集群之上共享和分割数据。
(2)OracleCoherence:Oracle的内存数据网格解决方案提供了常用数据的快速访问能力,一致性支持事务处理能力和数据的动态划分。
(3)TerracottaBigMemory:来自Terracotta的分布式内存管理解决方案。这项产品包括一个Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop连接器。
(4)GemFire:VmwarevFabricGemFire是一个分布式数据管理平台,也是一个分布式的数据网格平台,支持内存数据管理、复制、划分、数据识别路由和连续查询。
(5)Infinispan:Infinispan是一个基于Java的开源键值NoSQL数据存储,和分布式数据节点平台,支持事务,peer-to-peer及client/server架构。
(6)GridGain:分布式、面向对象、基于内存、SQLNoSQL键值数据库。支持ACID事务。
(7)GigaSpaces:GigaSpaces内存数据网格能够充当应用的记录系统,并支持各种各样的高速缓存场景。
现在比较大型点的系统基本上是APDB的架构:AP指应用程序,DB指数据库端
AP放在一个服务器上,DB放在另一个服务器上
当一个系统比较大,访问的用户数量比较多的时候,比如QQ,上亿用户
这时一个服务器就吃不消了,这样就想到多个服务器跑同一个AP应用
DB端也一样
linux集群指的就是多个服务器跑同一个AP应用,系统管理员的工作
数据库集群指的就是多个服务器跑同一个DB数据库数据库管理员的工作
linux集群基础就要熟悉linux系统
数据库集群基础就要熟悉具体的数据库如oracle,db2,sysbasemysql等
0基础可以学,只是要花时间0基础想搞到集群估计得花3个月时间这还是要有环境的,有人指导才行
简单说,分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。
例如:
如果一个任务由10个子任务组成,每个子任务单独执行需1小时,则在一台服务器上执行改任务需10小时。
采用分布式方案,提供10台服务器,每台服务器只负责处理一个子任务,不考虑子任务间的依赖关系,执行完这个任务只需一个小时。(这种工作模式的一个典型代表就是Hadoop的Map/Reduce分布式计算模型)
而采用集群方案,同样提供10台服务器,每台服务器都能独立处理这个任务。假设有10个任务同时到达,10个服务器将同时工作,10小后,10个任务同时完成,这样,整身来看,还是1小时内完成一个任务!
以下是摘抄自网络文章:
一、集群概念
1 两大关键特性
集群是一组协同工作的服务实体,用以提供比单一服务实体更具扩展性与可用性的服务平台。在客户端看来,一个集群就象是一个服务实体,但事实上集群由一组服务实体组成。与单一服务实体相比较,集群提供了以下两个关键特性:
· 可扩展性--集群的性能不限于单一的服务实体,新的服务实体可以动态地加入到集群,从而增强集群的性能。
· 高可用性--集群通过服务实体冗余使客户端免于轻易遇到out of service的警告。在集群中,同样的服务可以由多个服务实体提供。如果一个服务实体失败了,另一个服务实体会接管失败的服务实体。集群提供的从一个出 错的服务实体恢复到另一个服务实体的功能增强了应用的可用性。
2 两大能力
为了具有可扩展性和高可用性特点,集群的必须具备以下两大能力:
· 负载均衡--负载均衡能把任务比较均衡地分布到集群环境下的计算和网络资源。
· 错误恢复--由于某种原因,执行某个任务的资源出现故障,另一服务实体中执行同一任务的资源接着完成任务。这种由于一个实体中的资源不能工作,另一个实体中的资源透明的继续完成任务的过程叫错误恢复。
负载均衡和错误恢复都要求各服务实体中有执行同一任务的资源存在,而且对于同一任务的各个资源来说,执行任务所需的信息视图(信息上下文)必须是一样的。
3 两大技术
实现集群务必要有以下两大技术:
· 集群地址--集群由多个服务实体组成,集群客户端通过访问集群的集群地址获取集群内部各服务实体的功能。具有单一集群地址(也叫单一影像)是集群的一个基本特征。维护集群地址的设置被称为负载均衡器。负载均衡器内部负责管理各个服务实体的加入和退出,外部负责集群地址向内部服务实体地址的转换。有的负载均衡器实现真正的负载均衡算法,有的只支持任务的转换。只实现任务转换的负载均衡器适用于支持ACTIVE-STANDBY的集群环境,在那里,集群中只有一个服务实体工作,当正在工作的服务实体发生故障时,负载均衡器把后来的任务转向另外一个服务实体。
· 内部通信--为了能协同工作、实现负载均衡和错误恢复,集群各实体间必须时常通信,比如负载均衡器对服务实体心跳测试信息、服务实体间任务执行上下文信息的通信。
具有同一个集群地址使得客户端能访问集群提供的计算服务,一个集群地址下隐藏了各个服务实体的内部地址,使得客户要求的计算服务能在各个服务实体之间分布。内部通信是集群能正常运转的基础,它使得集群具有均衡负载和错误恢复的能力。
二、集群分类
Linux集群主要分成三大类(高可用集群, 负载均衡集群,科学计算集群)
高可用集群(High Availability Cluster)
负载均衡集群(Load Balance Cluster)
科学计算集群(High Performance Computing Cluster)
具体包括:
Linux High Availability 高可用集群
(普通两节点双机热备,多节点HA集群,RAC, shared, share-nothing集群等)
Linux Load Balance 负载均衡集群
(LVS等)
Linux High Performance Computing 高性能科学计算集群
(Beowulf 类集群)
三、详细介绍
1 高可用集群(High Availability Cluster)
常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如"双机热备","双机互备","双机"。
高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。
2 负载均衡集群(Load Balance Cluster)
负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。
负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。
3 科学计算集群(High Performance Computing Cluster)
高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。
31 高性能计算分类
311 高吞吐计算(High-throughput Computing)
有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME -- Search for Extraterrestrial Intelligence at Home )就是这一类型应用。这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的 数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。所谓的Internet计算都属于这一类。按照 Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。
312 分布计算(Distributed Computing)
另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。
四、分布式(集群)与集群的联系与区别
分布式是指将不同的业务分布在不同的地方;而集群指的是将几台服务器集中在一起,实现同一业务。
分布式中的每一个节点,都可以做集群。 而集群并不一定就是分布式的。
举例:就比如新浪网,访问的人多了,他可以做一个群集,前面放一个响应服务器,后面几台服务器完成同一业务,如果有业务访问的时候,响应服务器看哪台服务器的负载不是很重,就将给哪一台去完成。
而分布式,从窄意上理解,也跟集群差不多, 但是它的组织比较松散,不像集群,有一个组织性,一台服务器垮了,其它的服务器可以顶上来。
分布式的每一个节点,都完成不同的业务,一个节点垮了,那这个业务就不可访问了。
由二台或更多物理上独立的服务器共同组成的“虚拟”服务器称之为集群服务器。一项称做MicroSoft集群服务(MSCS)的微软服务可对集群服务器进行管理。一个SQL Server集群是由二台或更多运行SQL Server的服务器(节点)组成的虚拟服务器。如果集群中的一个节点发生故障,集群中的另一个节点就承担这个故障节点的责任。
认为一个SQL Server集群能够给集群中的两个节点带来负载平衡,这是一种常见的误解。虽然这似乎很有用,但却是不正确的。这也意味着集束SQL Server不能真正提高性能。集束SQL Server只能提供故障转移功能。故障转移就是当系统中的一台机器发生故障失去其功能时,另一台机器将接手运行它的SQL Server实例。这种功能失效可能是由于硬件故障、服务故障、人工故障或各种其它原因。
为何要集束SQL Server环境?
在实用性方面,集群SQL Server环境令人满意。在进行故障转移时,将数据库实例由一台服务器转移到另一台服务器的时间非常短暂,一般只需要3至7秒钟。虽然需要重建连接,但对数据库的终端用户而言,故障转移处理通常是透明的。低廉的故障转移成本还可帮助你对集群中的节点进行维护,而不会造成服务器完全无法访问。
SQL Server集群类型
一共有两种类型的SQL Server集群:主动/被动集群和主动/主动集群。下面分别对它们进行说明(说明以两个节点的SQL Server集群为基础)。
主动/被动集群
在这种类型的集群中,一次只有一个节点控制SQL Server资源。另一个节点一直处于备用模式,等待故障发生。进行故障转移时,备用的节点即取得SQL Server资源的控制权。
优点:由于服务器上只有一个实例在运行,所以在进行故障转移时,不需要另外的服务器来接管两个SQL Server实例,性能也不会因此降低。
缺点:由于虚拟服务器上只有一个SQL Server实例在运行,另一台服务器总是处理备用模式与空闲状态。这意味着你并没有充分利用你购买的硬件。
主动/主动集群
在这种类型的集群中,集群中的每个节点运行一个独立且主动的SQL Server实例。发生节点故障时,另一个节点能够控制发生故障节点的SQL Server实例。然后这个正常的节点将运行两个SQL Server实例——它自己的实例和发生故障的实例。
优点:通过这种配置,你能够充分利用你的硬件。在这样的系统中,两个服务器都在运行,而不是只有一台服务器运行,而另一台处于等待故障发生的备用模式,因此你能够充分利用你购买的机器。
缺点:如果进行故障转移,一台服务器运行两个SQL Server实例,性能就会受到不利影响。然而,性能降低总比虚拟服务器完全失灵要强得多。这种配置的另一故障在于它要求购买的许可要比主动/被动集群多一些。因为集群在运行两个主动SQL Server实例,这要求你购买两个单独的服务器许可。在某些情况下,这也可能对你形成阻碍。
集群考虑
在高实用性方面,集群SQL Server环境有一定的优势。然而,高实用性也确实伴随某种折衷。
首先,建立一个集群SQL Server环境非常昂贵。这是因为集群中的节点必须遵照集群节点的兼容性列表。而且,还需要建立一个复杂的网络,机器的配置必须几乎相同,同时需要实现数据库文件磁盘子系统共享。存储区网络(SAN)是建立这种子系统的不错选择,但SAN并非必要,而且十分昂贵。另外,如果你正在运行一个主动/主动集群,你需要为集群中运行SQL Server实例的每台机器的处理器购买一个许可。
因为当地集群主要局限于同一地理区域,自然灾难可能会使集群完全失灵。在那种情况下,你需要转移到灾难恢复站点进行继续 *** 作。你也可以建立地理分散的SQL Server集群,但这样的系统更加复杂与昂贵。
拿oracle为例:
集群是多台服务器共同提供服务,数据库集群的意思就是多台运行数据库服务的服务器组成一个集群。
oracle的集群,自己的是rac,最少需要2台机器,先装cluster或者grid,再在集群上安装数据库,就可以了。
要是db2的话,还得用ibm的 *** 作系统,安装一个集群软件
hacmp等等的。
反正
核心要理解的就是
,做集群,要有集群系统来支撑。例如
,文件同步访问等等的。
rac,hacmp等等的,都属于集群系统!
以上就是关于数据库中的集群和F5全部的内容,包括:数据库中的集群和F5、大数据常用哪些数据库(什么是大数据库)、什么是数据库集群等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)