有没有讲si rna注入小鼠体内的文献

有没有讲si rna注入小鼠体内的文献,第1张

有没有讲si rna注入小鼠体内的文献

A、A组小鼠体内未产生病毒q的抗体,所以某免疫学研究人员将病毒q注入A组小鼠体内,其小鼠均死亡;而B组小鼠体内产生了病毒q的抗体,所以将同剂量的病毒q注入B组小鼠体内,其小鼠只在第1周发热,以后恢复健康,A正确;

B、在死亡和恢复健康的两种小鼠的体内均检测出具有活性的病毒,所以两种情况下的病毒都具有活性.如果注入B组小鼠体内的病毒q没有活性,那么B组小鼠就不可能出现发热症状,更不可能最后又检测出有活性的病毒,因为没有活性的病毒不能进行正常的复制,也就无法繁殖产生有活性的子代病毒,B错误;

C、A组小鼠缺乏免疫力,不能产生足够的抗体对付病毒q,所以A组小鼠全部死亡; 而B组小鼠具有正常的免疫力,可以通过免疫能力产生足够的抗体对付病毒q,所以B组小鼠只在第1周发热,以后恢复健康,C正确;

D、A组小鼠的胸腺发育不全,免疫能力低下,因为无法彻底消灭病毒q而全部死亡;而B组小鼠的胸腺发育正常,有较强的免疫能力,足以对付病毒q,所以B组小鼠只在第1周发热,以后恢复健康,D正确.

从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。

2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。

在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。

2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。

CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所

“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”

除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”

此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。

Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”

该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。

3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )

A质粒示意图;BN2a细胞中 Pten 的下调;CWestern检测PTEN及AKT的表达; DCasRx与shRNA脱靶比较;E尾静脉注射质粒示意图;FGH免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达

图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )

A针对 Pcsk9 的AAV8病毒注射示意图;B肝组织中 Pcsk9 的表达量;C血清 PCSK9 的表达量;D血清胆固醇水平;EF血清ALT和AST的测定;G可逆调节注射示意图; H Pcsk9 的动态调控。

图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)

A小鼠和人序列比较以及sgRNA示意图;BC在293T和N2a细胞中敲低 Vegfa ;DVEGFA蛋白的表达;EAAV病毒质粒示意图;F实验流程图;GCasRx的mRNA表达水平;HI激光烧伤之前或之后7天的 Vegfa mRNA水平;JCNV诱导3天后的VEGFA蛋白水平;K激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;LMCNV面积统计。

2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。

该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。

人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。

在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。

作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。

帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。

该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。

大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。

研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。

为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。

在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。

需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。

(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。

(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。

(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。

RNA-editing Cas13 enzymes have taken the CRISPR world by storm Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity New work from Konermann et al and Yan et al describes new Cas13d enzymes that average only 28 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox

Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily Yan et al proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp (RspCas13d), while Konermann et al characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d

Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs crRNA cleavage is retained in dCas13d and is thus HEPN-independent These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system

Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below

The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain) Yan et al from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here )

Not all Cas13d proteins are functional in mammalian cells, but Konermann et al saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS) In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs

One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region Konermann et al show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary

Konermann et al compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown It seems that CasRx may make it possible to target essentially any RNA in a cell

Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al tested its ability to manipulate RNA species through exon skipping Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy In this case, Konermann et al targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx

The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community

References

Konermann, Silvana, et al “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors” Cell (2018) pii: S0092-8674(18)30207-1 PubMed PMID: 29551272

Yan, Winston X, et al “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein” Mol Cell (2018) pii: S1097-2765(18)30173-4 PubMed PMID: 29551514

\1 Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

\2 CRISPR genetic editing takes another big step forward, targeting RNA

\3 How Editing RNA—Not DNA—Could Cure Disease in the Future

>

不管你是什么小鼠组织提取的,起码应该两条以上

可能原因:1没跑开

2降解了

3提错了

我想你要是把图给我看看我能帮你找出是哪部分原因带上电压时间和MARKER

欢迎追问,

对于小鼠来说,质粒只存在于线粒体中

质粒提取可分为三个部分

1 裂解细胞

2 质粒DNA与染色体DNA的分离

3 纯化

这里找到一篇论文:

小鼠CD40Ig基因真核表达质粒的构建及鉴定

1 材料和方法

11 实验动物 Balb-c小鼠,6周龄, 雌性, 购自北京大学医学院实验动物部。

12 质粒、菌株、细胞株和主要试剂 质粒pEGFP-N1、pGEM-T载体质粒、E coliDH5a(天根公司)。低代次HEK293细胞株(本元正阳)。AdMaxTM Kit E试剂盒(Microbix Biosystems,Inc)。Taq酶、T4 DNA连接酶(Takara公司)。限制性核酸内切酶XmaⅠ、Bgl II、Hind III(Biolabs)。Trizol 试剂、Lipofectamine 2000(Invitrogen)。逆转录试剂盒、PCR Master Mix(MBI)。质粒提取、胶纯化试剂盒(QIAGEN)。DMEM高糖培养基、胎牛血清、胰酶(Gibco)。引物合成由上海生工公司完成,基因测序由北京诺塞基因研究中心有限公司完成。

13 构建小鼠CD40Ig基因真核表达质粒

131 小鼠脾脏总RNA的提取:将小鼠以颈椎脱臼法处死,取出脾脏,加入液氮研磨后,用Trizol试剂提取总RNA,方法按产品说明进行。

132 CD40、IgG2a Fc、GFP基因的制备:以小鼠脾脏总RNA为模板,oligo-dT为引物,RT-PCR合成cDNA,再以此cDNA为模板,用CD40和mIgG Fc特异引物进行PCR扩增,另以pEGFP-N1质粒为模板进行PCR扩增,引物及PCR反应条件见表1,分别获得CD40、mIgG2a Fc和GFP基因。

133 质粒pGEM-IgG的构建:将IgG Fc的PCR产物与pGEM-T质粒进行TA连接反应,即10μl PCR产物加2μl的pGEM-T载体加10 U的T4连接酶,16 ℃过夜。取2μl的连接产物以氯化钙法转化大肠杆菌DH5α,用蓝白斑方法挑选含氨苄青霉素抗性的白斑克隆,在3 ml LB培养基(含氨苄青霉素100 μg/ml)中37 ℃、80 r/min振荡培养过夜,提取质粒pGEM-IgG并测序。

134 质粒p516-IgG的构建:用Bgl II分别消化pGEM-IgG和pDC516,产物经10%琼脂糖凝胶电泳后进行胶纯化。将IgG片段和pDC516线性载体按7:1的摩尔浓度比例加T4连接酶16 ℃过夜进行连接反应。取5μl连接产物转化感受态大肠杆菌DH5α,用pDC516-f和mIgG-r引物组合进行菌落PCR筛选正向插入的重组子(见表2),将PCR阳性的重组子进行细菌培养,提取质粒并测序。

135 质粒p516-CD40-IgG融合基因的构建:用Xma I分别消化CD40的PCR产物和p516-IgG,将CD40片段和pDC516-IgG 线性载体进行连接(方法同上)。转化大肠杆菌DH5α后,用pDC516-f和CD40-r引物组合进行菌落PCR筛选(见表2),将阳性结果的重组子进行细菌培养,提取质粒并测序。

136 PDC516-CD40-IgG-GFP质粒的构建:用Hind Ⅲ分别消化GFP的PCR产物和pDC516-CD40-IgG,将GFP片段和pDC516-CD-IgG 线性载体进行连接反应(方法同上),用GFP-f和pDC516-r引物组合进行菌落PCR筛选正向插入的重组子(见表2),提取质粒并测序。

137 PDC516-CD40-IgG-GFP质粒的大量制备:按QIAGEN EndoFree Plasmid Purification试剂盒说明进行制备,产物经1%琼脂糖凝胶电泳证实(见图2),紫外分光光度仪测OD值,过滤除菌后-20 ℃保存备用。

138 重组质粒转染293细胞:在6孔板中将20×105个细胞接种于2 ml含血清不含抗生素的DMEM中,在5% CO2、37 ℃培养箱中培养24 h,使细胞在转染时铺满平板的60%~70%。用Lipofectamine 2000转染试剂介导重组质粒转染,在无菌EP管中准备A、B两种溶液。A液:将40μg DNA溶于250μl无血清DMEM中,轻轻混匀;B液:将10μl Lipofectamine 2 000溶于250μl无血清培养液中,轻轻混匀,室温孵育5 min。将A液和B液混合并混匀,室温孵育20 min,以形成脂质体/DNA复合物。换去6孔板中旧的培养液,重新加入2 ml含血清不含抗生素的DMEM,逐滴加入500μl脂质体/DNA复合物。在5% CO2、37 ℃培养箱中培养24 h后换液。

2 结果

21 获得小鼠CD40胞外区、IgG2a Fc段及GFP基因 引物CD40-f和CD40-r经PCR扩增的小鼠CD40胞外区基因片段为572 bp;引物mIgG-f和mIgG-r经PCR扩增的小鼠IgG2a Fc段为700 bp;引物GFP-f和GFP-r经PCR扩增的GFP基因片段为765 bp。琼脂糖凝胶电泳结果见图1。

22 pDC516-CD40-IgG-GFP真核表达质粒的成功构建

221 pDC516-IgG的构建:pGEM-T载体为3 000 bp的质粒,构建的pGEM-IgG质粒为3 700 bp。pGEM-T质粒的多克隆位点上游110 bp处含有T7 Primer序列,用T7+mIgG-r引物组合可扩增出约810 bp的片段,用T7 primer测序证实IgG序列的正确性。将IgG片段和pDC516线性载体进行连接反应,用pDC516-f测序证实IgG插入序列的正确性(见图3)。

222 pDC516-CD40-IgG的构建:将CD40片段和pDC516-IgG线性载体进行连接反应,用引物pDC516-f测序证实CD40插入序列的正确性。

223 pDC516-CD40-IgG-GFP质粒的构建:将GFP片段和pDC516-CD40-IgG 线性载体进行连接反应,用pDC516-r测序证实GFP插入序列的正确性。CD40-IgG-GFP含酶切位点的融合产物为2001bp,编码667aa(见图4)。

23 重组质粒在真核细胞内表达 pDC516-CD40-IgG-GFP质粒抽提后在紫外分光光度计下检测到OD值为01257。将该质粒用Lipofectamine 2000转染293细胞的第4天开始可见零星的细胞上有GFP表达,随着时间的延长,GFP表达的细胞量逐渐增多,第7天左右在荧光显微镜下见大量的细胞有绿色荧光发生(见图5)。

参考资料:

>

以上就是关于有没有讲si rna注入小鼠体内的文献全部的内容,包括:有没有讲si rna注入小鼠体内的文献、多篇论文报道CasRx在动物体内靶向沉默RNA的应用新成果、小鼠组织抽提rna为什么只看到一条带等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10158868.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)