mysql读和写达到瓶颈,可以通过如下方法:
1 查看MySQL慢查询日志,是否有很多慢查询sql;
2 MySQL处在高负载环境下,磁盘IO读写过多,肯定会占用很多资源,必然会CPU占用过高,所以可以用top命令查看MySQL所在服务器的cpu使用情况,从而分析是否有瓶颈;
3 show processlist查看MySQL当前的执行状态,查看是否有大量的Sleep或Locked状态;
数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。
可以做表拆分,减少单表字段数量,优化表结构。
在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。
主要两种拆分 垂直拆分,水平拆分。
垂直分表
也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。
垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。
数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。
水平分表
针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库 *** 作还是有IO瓶颈。不建议采用。
水平分库分表
将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。
水平分库分表切分规则
1 RANGE
从0到10000一个表,10001到20000一个表;
2 HASH取模
一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。
3 地理区域
比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。
4 时间
按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。
分库分表后面临的问题
事务支持
分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。
跨库join
只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。
跨节点的count,order by,group by以及聚合函数问题
这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。
数据迁移,容量规划,扩容等问题
来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由
一些常见的主键生成策略
UUID
使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。
Twitter的分布式自增ID算法Snowflake
在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。
跨分片的排序分页
一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。
影响数据库性能的因素
对于数据库爱好者们,数据库底层的各种细节,内幕,等待事件,隐藏参数等津津乐道,对于调整好一条SQL语句使之在查询优化器/查询引擎下能高性能运转具有巨大的满足感成功感,仿佛自己掌握了天下最有价值的真理,驾驭了天下最有难度的技术。但对于设计和开发出这个数据库系统的人来说,他们看到此情此景,只好躲在一边偷偷的笑了。那么问题来了,使用别人数据库的人被称为大师(如:OCM),那么自己写出一个数据库来的人又该称为什么呢?到底谁才是真正的高手呢?
数据库系统优化中的一些观点:
“系统性能出现问题进行优化,一定要深入了解数据库内部参数、等待事件、Latch、缓冲池、trace文件、查询/优化引擎等底层细节。”
这种观点往往出自数据库“高手”,这部分人以了解数据库底层实现细节而感到非常骄傲。但是从优化角度讲数据库的等待事件、Latch等指标高等等都只是问题的表象,懂得底层细节和内幕固然是好。但是解决问题的关键往往是在应用层进行优化。
“只要系统参数调整了,性能就能提高。系统优化应该调整那些参数…”
这种观点往往出自于一些偏运维和应用层的DBA,迷恋参数配置来调优。
调整系统参数是非常重要的,但不一定能解决性能问题,否则就不会有去IOE了,问题可能性最大的还是应用设计和开发问题。
同理,很多运维人员和系统架构师比较迷恋“Linux系统调优”。认为对“文件句柄数、磁盘子系统…”那些做了优化,就能提升整个应用系统的性能。其实不然。有些场景下,针对业务特点和应用类型做 *** 作系统调优是能取到立竿见影的效果,但是大多数时候往往提升并不明显。所以最关键的还是找出瓶颈所在,对症下药。/
“系统性能问题需要从架构上解决,与应用开发关系不大。”
系统性能与各个层面都有关,架构很重要,但应用开发也是非常重要的一环。
影响数据库性能的因素
1业务需求和技术选型
2应用系统的开发及架构
3数据库自身
31表结构的设计
32查询语句
33索引设计
34Mysql服务(安装、配置等)
35 *** 作系统调优
36硬件升级(SSD、更强的CPU、更大的内存)
4数据架构(读写分离、分库分表等)
在很多情况下,数据库可能是互联网应用系统的瓶颈。但是单纯从数据库角度去做优化,可能未必能达到理想的效果。
说点题外话,最近看到很多公司使用中间件或者分布式数据访问层来做数据库分片,说明也许该公司业务发展很快。但另一个方面,也令人担忧,他们的数据库压力真的已经到了必须切分不可的程度了吗?分库分表真的像科普的那么简单吗?他们能搞定分库分表带来的成本和问题吗?有没有更合适的优化方法呢?
当然是有的。其实“过度设计”和“提前优化”就是系统万恶之源。
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷
1 优化一览图
2 优化
笔者将优化分为了两大类,软优化和硬优化,软优化一般是 *** 作数据库即可,而硬优化则是 *** 作服务器硬件及参数设置
21 软优化
211 查询语句优化
1首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息
2例:
显示:
其中会显示索引和查询数据读取数据条数等信息
212 优化子查询
在MySQL中,尽量使用JOIN来代替子查询因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高
213 使用索引
索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者<MySQL数据库索引>一文,介绍比较详细,此处记录使用索引的三大注意事项:
214 分解表
对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,
215 中间表
对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时
216 增加冗余字段
类似于创建中间表,增加冗余也是为了减少连接查询
217 分析表,,检查表,优化表
分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费
1 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;
2 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]
option 只对MyISAM有效,共五个参数值:
3 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;
LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁
22 硬优化
221 硬件三件套
1配置多核心和频率高的cpu,多核心可以执行多个线程
2配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度
3配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行 *** 作的能力
222 优化数据库参数
优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能MySQL服务的配置参数都在mycnf或myini,下面列出性能影响较大的几个参数
223 分库分表
因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。
224 缓存集群
如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了
以上就是关于怎么判断mysql读和写达到了瓶颈全部的内容,包括:怎么判断mysql读和写达到了瓶颈、Mysql某个表有近千万数据,CRUD比较慢,如何优化、影响数据库性能的因素等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)