随着大数据技术体系的发展,越来越多的企业应用大数据技术支撑自己的业务发展。数据采集作为大数据的起点,是企业主动获取数据的一种重要手段。数据采集的多样性、全面性直接影响数据质量。
企业获取数据的渠道分为内部和外部两个渠道。内部渠道包含自己建设的业务系统,如电商系统、门户网站、门户论坛等。外部渠道包含爬虫系统爬取的数据、三方合作平台数据、公共社交平台数据等。那么如何从这些渠道获取数据?下面简单地介绍一下常用的数据采集工具。
结构化数据采集工具。
结构化数据在分析型的原始数据占比比较大,大部分经过预处理进入数据仓库进一步多维分析和数据挖掘。常用的数据采集工具有:
1 Apache Flume
支持离线与实时数据导入,是数据集成的主要工具。
2 Apache Sqoop
主要使用JDBC等工具连接关系型数据库与Hadoop生态圈的文件系统,通过配置文件配置双向连接信息后,通过命令完成数据的导入导出。
半结构化数据采集工具
半结构化的数据多见于日志格式。对于日志采集的工具,比较常见的是
1 Logstash
Logstash与ElasticSearch、Kibana并称为ELK,是采集日志的黄金搭档。
2 Apache Flume也多用于日志文本类数据采集。
非结构化数据采集工具
1 DataX
DataX轻量级中间件,在关系型数据库导入导出性能比较优异。支持多种数据类型的导入导出。
流式数据采集工具
1 Kafka
性能优异超高吞吐量。
Binlog日志采集工具
1 Canal
基于MySQL数据库增量日志解析提供增量日志订阅和消费功能。
爬虫采集框架与工具
1 Java栈,Nutch2、WebMagic等。
2 Python栈,Scrapy、PySpider
3 第三方爬虫工具,八爪鱼、爬山虎、后羿等等。
logstach 做数据同步到elasticseach中。
input {
stdin {
}
jdbc {
# mysql 数据库链接,shop为数据库名
jdbc_connection_string => "jdbc:mysql://1020128245:3306/es_test"
# 用户名和密码
jdbc_user => "root"
jdbc_password => "123456"
# 驱动
jdbc_driver_library => "E:/tools/logstash-642/logstash-642/mysql/mysql-connector-java-604jar"
# 驱动类名
jdbc_driver_class => "commysqljdbcDriver"
jdbc_paging_enabled => "true"
jdbc_page_size => "50000"
# 执行的sql 文件路径+名称
statement_filepath => "E:/tools/logstash-642/logstash-642/mysql/jdbcsql"
# 设置监听间隔 各字段含义(由左至右)分、时、天、月、年,全部为默认含义为每分钟都更新
schedule => " "
}
}
filter {
json {
source => "message"
remove_field => ["message"]
}
}
output {
elasticsearch {
# ES的IP地址及端口
hosts => ["127001:9200"]
# index名
index => "company"
# 需要关联的数据库中有有一个id字段,对应索引的id号
document_id => "%{id}"
template_overwrite => true
# 分词模板
template => "E:/tools/logstash-642/logstash-642/mysql/template/companyjson"
template_name => "company_template"
document_type => "employee"
}
stdout {
# JSON格式输出
codec => json_lines
}
}
本文讲解如何通过一套开源日志存储和检索系统 ELK 构建 MySQL 慢日志收集及分析平台。
ELK、EFK 简介
想必你对 ELK、EFK 都不陌生,它们有一个共同的组件:Elasticsearch(简称ES),它是一个实时的全文搜索和分析引擎,可以提供日志数据的收集、分析、存储 3 大功能。另外一个组件 Kibana 是这套检索系统中的 Web 图形化界面系统,可视化展示在 Elasticsearch 的日志数据和结果。
ELF/EFK 工具集中还有 l 和 F 这两个名称的缩写,这两个缩写代表的工具根据不同的架构和使用方式而定。
L 通常是 Logstash 组件,它是一个用来搜集、分析、过滤日志的工具 。
F 代表 Beats 工具(它是一个轻量级的日志采集器),Beats 家族有 6 个成员,Filebeat 工具,它是一个用于在客户端收集日志的轻量级管理工具。
F 也可以代表工具 fluentd,它是这套架构里面常用的日志收集、处理转发的工具。
那么它们(Logstash VS Beats VS fluentd)有什么样的区别呢?Beats 里面是一个工具集,其中包含了 Filebeat 这样一个针对性的日志收集工具。Logstash 除了做日志的收集以外,还可以提供分析和过滤功能,所以它的功能会更加的强大。
Beats 和 fluentd 有一个共同的特点,就是轻量级,没有 Logstash 功能全面。但如果比较注重日志收集性能,Beats 里面的 Filebeat 和 fluentd 这两个工具会更有优势。
Kafka 是 ELK 和 EFK 里面一个附加的关键组件(缩写 K),它主要是在支持高并发的日志收集系统里面提供分布式的消息队列服务。
ELK 的优势
在此之前,先介绍 ELK 日志分析会有一些什么样的优势?主要有 3 点:
1、它是一套开源、完整的日志检索分析系统,包含收集、存储、分析、检索工具。我们不需要去开发一些额外的组件去完成这套功能,因为它默认的开源方式就提供了一整套组件,只要组合起来,就可以完成从日志收集、检索、存储、到整个展示的完整解决方案了。
2、支持可视化的数据浏览。运维人员只要在控制台里选择想关注的某一段时间内的数据,就可以查看相应的报表,非常快捷和方便。
3、它能广泛的支持一些架构平台,比如我们现在讲到的 K8s 或者是云原生的微服务架构。
Kafka 作为日志消息队列,客户端通过 Filebeat 收集数据(日志)后将其先存入 Kafka,然后由 Logstash 提取并消费,这套架构的好处是:当我们有海量日志同步情况下,直接存入服务端 ES 很难直接应承接海量流量,所以 Kafka 会进行临时性的存取和缓冲,再由 Logstash 进行提取、过滤,通过 Logstash 以后,再把满足条件的日志数据存入 ES。
ES 不再是以单实例的方部署,而是采用集群架构,考虑 Kafka 的集群模式, Logstash 也使用集群模式。
我们会看到这套架构稍微庞大,大中型的企业往往存储海量数据(上百 T 或 P 级)运维日志、或者是系统日志、业务日志。
完成ELK服务搭建后,首先我需要开启的是 MySQL 的慢查询配置,那么通过 set global slow_query_log=‘ON‘,这样就可以开启慢查询日志,还需要设置好慢查询日志标准是大于 1 秒的,那么同样是 set global long_query_time 大于或等于 1,它的意思是大于 1 秒的查询语句,才会认为是慢查询,并且做日志的记录。
那么另外还要设置慢查询日志的位置,通过 set global slow_query_log = 日志文件路径,这里设置到 filebeat 配置监听的路径下,就完成了慢查询日志的路径设置。
配置完成以后,需要在 MySQL 终端上,模拟执行一条执行时间较长的语句,比如执行 select sleep(5),这样就会模拟执行一条查询语句,并且会让它休眠 5 秒。接下来我们看到服务端窗口的 MySQL 这条 sleep 语句已经执行完毕了,同时我们可以再打开 filebeat 的推送窗口,发现这里产生了一条推送日志,表示成功地把这条日志推送给了 ES。
那么接下来我们就可以通过浏览器打开 Kibana 的管理后台,从界面里来看一看检索日志的记录和一些可视化展示的图表,我们可以点击界面上的 Discover 按钮,同时选择好对应的时间周期,然后可以增加一个 filter 过滤器,过滤器里面敲入对应的关键字来进行索引。
这里我敲入的是 slowquery 这个关键字,就会匹配出对应的可以检索的项目,点击想要查询的对应项目,展示出想检索的某一个时间周期内对应的一些日志记录,以及它的图表是什么样子的,同时在下方会有对应的 MySQL 的日志信息打印出来,通过 Kibana 这样的可视化界面就能够看到的相关信息了。
DT时代,数以亿万计的服务器、移动终端、网络设备每天产生海量的日志。中心化的日志处理方案有效地解决了在完整生命周期内对日志的消费需求,而日志从设备采集上云是第一步。
下面介绍下常见的三款日志采集工具并对比分析。
Logstash是一款开源的数据收集引擎,具备实时管道处理能力。简单来说,logstash作为数据源与数据存储分析工具之间的桥梁,结合 ElasticSearch以及Kibana,能够极大方便数据的处理与分析。通过200多个插件,logstash可以接受几乎各种各样的数据。包括日志、网络请求、关系型数据库、传感器或物联网等等。
logstash基于JRuby实现,可以跨平台运行在JVM上。
模块化设计,有很强的扩展性和互 *** 作性。
开源社区中流行的日志收集工具,td-agent是其商业化版本,由Treasure Data公司维护,是本文选用的评测版本。
fluentd基于CRuby实现,并对性能表现关键的一些组件用C语言重新实现,整体性能不错。
fluentd设计简洁,pipeline内数据传递可靠性高。相较于logstash,其插件支持相对少一些。
阿里云日志服务的生产者,目前在阿里集团内部机器上运行,经过3年多时间的考验,目前为阿里公有云用户提供日志收集服务。
采用C++语言实现,对稳定性、资源控制、管理等下过很大的功夫,性能良好。相比于logstash、fluentd的社区支持,logtail功能较为单一,专注日志收集功能。
后面会分享更多devops和DBA方面内容,感兴趣的朋友可以关注下!
大数据的由来
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
1
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大数据的应用领域
大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。
制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。
互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。
体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。
安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。
大数据方面核心技术有哪些?
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。
数据采集与预处理
对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。
Flume NG
Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。
NDC
Logstash
Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。
Sqoop
Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapReduce 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。
流式计算
流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。
Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。
Zookeeper
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。
数据存储
Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。
HBase
HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
Phoenix
Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。
Yarn
Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。
Mesos
Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。
Redis
Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。
Atlas
Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。
Kudu
Kudu是围绕Hadoop生态圈建立的存储引擎,Kudu拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描 *** 作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Kudu的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。
在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。
数据清洗
MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
Oozie
Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。
Azkaban
Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。
流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求
数据查询分析
Hive
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce。可以将Hive理解为一个客户端工具,将SQL *** 作转换为相应的MapReduce jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapReduce程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapReduce 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。
Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。
Impala
Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来 *** 作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapReduce任务,相比Hive没了MapReduce启动时间。
Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。
Spark
Spark拥有Hadoop MapReduce所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像 *** 作本地集合对象一样轻松地 *** 作分布式数据集。
Nutch
Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。
Solr
Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过>
以上就是关于使用Filebeat采集日志结合logstash过滤出你想要的日志全部的内容,包括:使用Filebeat采集日志结合logstash过滤出你想要的日志、以下哪些属于集中化大数据平台外部采集数据、大数据数据采集工具简介等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)