流量cc是什么意思

流量cc是什么意思,第1张

液体流动单元:流量(CC/Min),即每分钟的流量为**CC,如下参考:

Cc是体积单位1cc=1毫升=1cm^3。

m³也就是1m³等于100000cm³。

1立方米和1毫升/分是体积和流量的单位,没有换算关系。

扩展资料:

CC主要用于调用数据和程序池,使两个进程占用CPU的100%,使服务器不能处理其他访问数据来达到拒绝服务的目的,不会占用太多的流量。攻击者使用代理服务器向受害主机生成合法请求,实现DDOS,并伪装称为:cc(挑战者ollapsar)。

一个静态页面不需要多少服务器资源,甚至读出来你直接在内存中是好的,但是BBS是不同的,我读了一篇文章,在数据库系统需要确定我读过《华盛顿邮报》的权威,如果有的话,在发布内容,显示这里至少拜访两个数据库。

如果数据库数据容量是200MB,系统可能会再次在200MB的数据空间搜索,CPU资源和时间要花多少钱?如果我在寻找一个关键字,那么时间更重要。

因为前面的搜索可以被限制在一个小范围内,如用户权限只检查用户表,文章只检查posts表,但也可以停止检查查询,搜索必将所有的数据判断,时间消耗是相当大的。

CC通过一遍又一遍地模拟多个用户(有多少线程,就有多少用户)访问(需要大量数据 *** 作的页面,即大量CPU时间),充分利用了这个特性。这可以通过使用一个通用的性能测试软件同时模拟大量的用户来实现。

简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。

数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。

数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。

数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。

单从概念上讲,有些晦涩。任何技术都是为应用服务的,结合应用可以很容易地理解。以银行业务为例。数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。

显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。

数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。那么,数据仓库与传统数据库比较,有哪些不同呢让我们先看看WHInmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。

“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。

“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。

“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。

数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。

补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。

1效率足够高。客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。

2数据质量。客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。

3扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。

作者:王慧贤

数据存储、数据分析、数据安全如今,围绕“数据”的话题越来越多,离人们的生活也越来越近。

从陌生到熟悉,数据不仅“出圈”,甚至已然站在了C位。去年,中央发布的《关于构建更加完善的要素市场化配置体制机制的意见》中明确表示,继土地、劳动力、资本、技术后,数据成为第五大生产要素。

步入信息化时代后,数据库、 *** 作系统与中间件作为计算机最基础的三大软件,支撑着企业的正常运行。

当数据成为生产要素后,必然会迎来爆发式增长,企业的数据存储和处理需求将进一步释放。更重要的是,疫情加快了数字化转型的脚步,更加速了企业的上云速度。

从信息化到数字化,时代的变革,总会带来商业世界的变化。如何在云原生架构下使用数据库,成为企业的痛点和云厂商的机会,亚马逊AWS的CTO Werner Vogels曾多次强调:“数据库是云计算的终极之战。”

在数智化时代,云原生到底意味着什么?云原生数据库和传统数据库相比,核心优势是什么?是否把数据库搬上云就是云原生?基于这些问题,雷锋网与阿里巴巴集团副总裁、阿里云数据库产品事业部负责人李飞飞展开一场对话。

国产云原生数据库,摆脱「切肤之痛」

如今,数据库的商业世界,因为云的出现与发展,分成了两大派系。

一派是以Oracle为代表的传统商用数据库,一派是以国外AWS、国内阿里云为代表的云原生数据库,去“IOE革命”下的产物。

其实,早期较为火热的数据库种类有三种,层次式数据库、网络式数据库和关系型数据库。

在《浪潮之巅》一书中,作者吴军写下了这样的观点:“Oracle 的兴起很大程度上靠的是它最早看到关系型数据库的市场前景,并且在商业模式上优于 IBM。”

因此,在云原生数据库“入世”之前,数据库的天下一直是Oracle的,国内大部分互联网公司都不得不采用Oracle+IBM小型机+EMC的模式来维持正常运营。

高昂的费用,使得对于数据库需求较大的互联网巨头“忍无可忍”。

2009年,阿里巴巴的Oracle RAC 集群节点数达到了创记录的20个。可由于Oracle并没有d性扩展的功能,只能按照峰值流量购买小型机和数据库,导致阿里将业务上涨带来的大部分利润,都支付给了Oracle。

第二年,阿里便开始走上了去“IOE”之路,根据开源MySQL搭建了AliSQL,并顺利经过了淘宝双11的考验,国产云原生数据库算是正式摆脱了“切肤之痛”,逐渐受到市场的真正认可。

另一边,国外的AWS在2015年公布了基于云计算的自研数据库Amazon Aurora。Aurora是一个关系型数据库,可以跨3个可用区域复制6份数据,其最大的特性就是高性能和高可用性。

云计算巨头的入局,让云原生数据库在国内外一步步成为主流。据Gartner预测,到了2021年,云数据库在整个数据库市场中的占比将首次达到50%,到2023年,75%的数据库都要跑在云平台之上。

关于云原生数据库,随着逐步的出圈,也让人们关心的焦点从“是啥?”转变为“还能解决哪些问题?”

但云原生数据库存在着数据孤岛的问题,无法打通多个数据系统的情况下,企业在数据加工和数据管理上就会“压力较大”,甚至在数据安全方面还存在隐患。

传统数据仓库一般基于T+1数据集成构建离线数仓,以支撑企业各项分析与服务。传统方案不但会影响线上业务稳定性,且难以支持企业的实时需求。

因此,在李飞飞看来,云原生数据库已经走到20阶段。这个阶段要解决的问题,就是上述存在的痛点。

9月26日,在阿里云数据库创新上云峰会上,阿里云发布了首个一站式敏捷数据仓库解决方案。该方案结合一站式数据管理平台DMS及云原生数据仓库AnalyticDB(简称:ADB),实现了库仓一体的技术架构,提供在线数据实时入仓、T+1周期性快照、按需建仓等能力,数据延时低至秒级,持续赋能业务在线化,使企业的在线数据可以释放出更大的价值。

相较于传统方案,阿里云一站式敏捷数据仓库解决方案有4大核心优势:

1、对业务侧影响小,不会因为数据汇聚集中和实时加工影响业务侧正常运行,CPU、内存占用低于5%;

2、事务顺序和数据准确性有保障,且处理链路短,支持在线数据实时处理落仓,效率更高。数据传输效率100m/s,数据延时在10秒内;

3、支持复杂实时数据加工、计算逻辑;

4、低代码 *** 作,能够大大降低实时数仓的构建难度,提升构建效率的同时,支撑企业数字化转型过程中的各类实时场景。

除了实时统计分析场景外,企业为满足周期性数据分析需求,需建设周期性全量快照。

传统数仓的周期性全量集成方案会对生产业务造成稳定性影响、全量集成时效性差、且无法满足客户针对任意时间点进行数据回溯的业务诉求。

针对T+1周期性集成场景,一站式敏捷数据仓库解决方案支持基于拉链表的T+1全量数据快照,用户通过简单几个步骤,即可按需生成各种周期的全量或增量快照。

此外,业务还可按需进行任意时间点的数据回溯,以快速解决数据异常问题。

谈起未来数据库的发展趋势,李飞飞提到以下五点:

1、云原生+分布式一定是数据库的标配,分布式已经是必选项。分布式数据库由多个相互连接的数据库组合而成,面向用户则是以单个数据库的形态出现。云原生分布式数据库具备易用性、高扩展性、快速迭代、节约成本等特征,从资源池化到d性扩展,再到智能运维,再到离在线一体化,解决企业用户的核心诉求。

2、AI for DB(database,指数据库)和 DB for AI 将是主流趋势。用AI将数据库运维管控智能化,尤其在云原生+分布式这个前提下更重要,因为数据库不仅是内核的能力d性高可用、可拓展性,更重要的是部署后应用和运维的复杂度要大大降低。在数据库里,面对越来越多非结构化的数据,分析能力十分重要。

3、数据的安全可信,在今天这个大环境下变得愈发重要,如何确保整个数据库系统,在处理数据全链路过程中提供加密能力、多方安全计算能力、隐私保护的能力,也是很重要的趋势。

4、多模数据处理能力将越来越重要。比如,新型数据库多模态的处理能力,在新能源 汽车 企业打标签、智能电池化预测等应用场景中,将发挥越来越重要的作用。

5、一份数据,多个数据处理引擎:实现仓库一体、仓库联动、仓库打通,数据之间无缝流转。

以上判断,也从侧面反映出阿里云数据库的走向,这点毋庸置疑。但除此之外,业界最关心的,还有开源。

近半年,国内很多厂商相继提出开源战略,背后缘由显而易见,为了打造生态。就在今年的阿里云峰会上,阿里云智能总裁、达摩院院长张建锋(花名行癫)将2021年阿里云的发展关键词归纳为:做好服务、做深基础、做厚中台、做强生态。

做好服务与生态,成为如今厂商们不约而同的目标,而开源,就是最好的选择。

当雷锋网问到:“未来,阿里云数据库会不会把所有能力都开源?”这一问题时,李飞飞给到的回答是:“不会。”

之所以有这样的回答,是因为对于开源,他有着一些判断和看法。

李飞飞表示,这些部分,本就是阿里云数据库的商业化版本。

事实上,业界大多数的数据库厂商都不会针对自身的核心能力开源,如TiDB的核心管控组件、TiFlash。

与像MongoDB,、Cassandra、CouchDB这些以开源起家的数据库厂商不同,开源只是阿里云数据库的战略,不是阿里云数据库的命脉。

前几年,有业内人士表示,在面向开源时,国产数据库首先需要解决信任以及开源知识产权等问题。“开源会让厂商更加认真思考版权还有专利的问题,事实上,选择开源后,对于数据库厂商提出了更高的要求。”

李飞飞认为,开源只是一种选择,数据库开源成功并不代表着商业化就能够成功,不开源也不能代表厂商不先进。

更准确的说,开源只是一种有效手段。

最终,阿里云数据库希望客户能够通过开源版本把阿里云数据库产品技术快速用起来,并能够参与到技术产品的迭代过程中,在一些高阶能力上,借鉴团队专业能力和阿里云的服务能力,成为良好的商业合作伙伴,这是李飞飞以及阿里云数据库对于开源的一些基本思考。雷锋网雷锋网雷锋网

问题一:sql server中的架构是什么意思 通俗点说就是一个组,里面可以存放表、视图、存储过程等

主要是用于权限控制安全控制的

问题二:什么是架构,SQL中的架构有哪些 架构(Schema)是形成单个命名空间的数据库实体的 。

命名空间是一个 ,其中每个元素的名称都是唯一的。

可以将架构看成一个存放数据库中对象的一个容器。

架构实际上在sqlserver2000中就已经存在,当我们使用查询分析器去查询一个表的时候,一个完整的表的名称应该包括服务器名数据库名用户名对象名,而在sqlserver2005中一个表的完全限定名称应该为服务器名数据库名架构名对象名

在2000中,假如有一个账户tt在test数据库中创建了一张表table1的时候,在服务器上对查询的语句应为select from testtttable1,也就是说,在sqlserver 2000中一张表所属的架构默认就是表的创建者的登录名称,用户可以和修改他所创建的所有数据库对象。

问题三:数据库架构是什么 参考有一个声音再也不能的在耳边响起,有一双手再也握不住那手心的温度与舒适。

问题四:数据架构是什么 数据架构即数据库架构

数据库是相关数据的 ,一个数据库含有各种成分,包括表、记录、字段、索引等。

1.数据库(Database)

Visual Basic中使用的数据库是关系型数据库(Relational Database)。一个数据库由一个或一组数据表组成。每个数据库都以文件的形式存放在磁盘上,即对应于一个物理文件。不同的数据库,与物理文件对应的方式也不一样。对于dBASE,FoxPro和Paradox格式的数据库来说,一个数据表就是一个单独的数据库文件,而对于Microsoft Access、Btrieve格式的数据库来说,一个数据库文件可以含有多个数据表。

2.数据表(Table)

简称表,由一组数据记录组成,数据库中的数据是以表为单位进行组织的。一个表是一组相关的按行排列的数据;每个表中都含有相同类型的信息。表实际上是一个二维表格,例如,一个班所有学生的考试成绩,可以存放在一个表中,表中的每一行对应一个学生,这一行包括学生的学号,姓名及各门课程成绩。

3.记录(Record)

表中的每一行称为一个记录,它由若干个字段组成。

4.字段(Field)

也称域。表中的每一列称为一个字段。每个字段都有相应的描述信息,如数据类型、数据宽度等。

5.索引(Index)

为了提高访问数据库的效率,可以对数据库使用索引。当数据库较大时,为了查找指定的记录,则使用索引和不使用索引的效率有很大差别。索引实际上是一种特殊类型的表,其中含有关键字段的值(由用户定义)和指向实际记录位置的指针,这些值和指针按照特定的顺序(也由用户定义)存储,从而可以以较快的速度查找到所需要的数据记录。

6.查询(Query)

一条SQL(结构化查询语言)命令,用来从一个或多个表中获取一组指定的记录,或者对某个表执行指定的 *** 作。当从数据库中读取数据时,往往希望读出的数据符合某些条件,并且能按某个字段排序。使用SQL,可以使这一 *** 作容易实现而且更加有效。SQL是非过程化语言(有人称为第四代语言),在用它查找指定的记录时,只需指出做什么,不必说明如何做。每个语句可以看作是一个查询(query),根据这个查询,可以得到需要的查询结果。

7.过滤器(Filter)

过滤器是数据库的一个组成部分,它把索引和排序结合起来,用来设置条件,然后根据给定的条件输出所需要的数据。

8视图(view)

数据的视图指的是查找到(或者处理)的记录数和显示(或者进行处理)这些记录的顺序。在一般情况下,视图由过滤器和索引控制

问题五:数据库中的文件组和架构有什么不同?两者之间的关系是什么? 文件组 是 管理 物理文件的 多个物理文件, 放在一个组里面

架构 不知道你指的是不是 Schema

如果是的话。

架构 是 逻辑上面的, 一个数据库, 可以划分为多个 架构, 每个 架构 存储其独有的业务数据。

SQL Server 默认使用一个 名为 dbo 的 构架。

问题六:数据库-架构和数据库-管理指的是什么 数据库架构:

下面是基于SQLserver数据库来谈的。贰

SQLServer经过这些年的发展,其实已经有很多很好的技术可以使用,如Replication、SSB、Cluster、Mirroring等(可以参考我在SQLServer DBA 三十问和SQLServer 高可用、高性能和高保护延伸 中的一些技术方面的知识),而且这些技术在可靠性方面已经通过了市场的认可,有很多公司在为提高其程序的可靠性、安全性和高效性等方面或多或少的采用了其中的某些技术,以下就我接触过的这些技术方面的应用,主要针对网站这种流量很大,读多写少的应用,就数据库架构方面做些探讨,希望对各位有所帮助,如有不对的地方,欢迎大家指正和交流。

数据库架构需要考虑的问题:

数据可靠和一致性;

数据容灾;

当数据量和访问压力变大时,方便扩充;

高度可用,出问题时能及时恢复,无单点故障;

不应因为某一台机器出现问题,导致整网性能的急剧下降;

方便维护。

数据库管理:

数据库管理(Database Manager)是有关建立、存储、修改和存取数据库中信息的技术,是指为保证数据库系统的正常运行和服务质量,有关人员须进行的技术管理工作。负责这些技术管理工作的个人或集体称为数据库管理员(DBA)。数据库管理的主要内容有:数据库的调优、数据库的重组、数据库的重构、数据库的安全管控、报错问题的分析和汇总和处理、数据库数据的日常备份 数据库的建立:数据库的设计只是提供了数据的类型、逻辑结构、联系、约束和存储结构等有关数据的描述。这些描述称为数据模式。

问题七:oracle数据库的结构是什么? Oracle数据库的体系结构包括四个方面:数据库的物理结构、逻辑结构、内存结构及进程。

1 物理结构

物理数据库结构是由构成数据库的 *** 作系统文件所决定,Oracle数据库文件包括:

数据文件(Data File)

数据文件用来存储数据库中的全部数据,例如数据库表中的数据和索引数据通常以为dbf格式,例如:userCIMSdbf 。

日志文件(Redo Log File)

日志文件用于记录数据库所做的全部变更(如增加、删除、修改)、以便在系统发生故障时,用它对数据库进行恢复。名字通常为Logdbf格式,如:Log1CIMSdbf,Log2CIMSdbf 。

控制文件(Control File)

每个Oracle数据库都有相应的控制文件,它们是较小的二进制文件,用于记录数据库的物理结构,如:数据库名、数据库的数据文件和日志文件的名字和位置等信息。用于打开、存取数据库。名字通常为Ctrlctl 格式,如Ctrl1CIMSctl。

配置文件

配置文件记录Oracle数据库运行时的一些重要参数,如:数据块的大小,内存结构的配置等。名字通常为initora 格式,如:initCIMSora 。

2 逻辑结构

Oracle数据库的逻辑结构描述了数据库从逻辑上如何来存储数据库中的数据。逻辑结构包括表空间、段、区、数据块和模式对象。数据库的逻辑结构将支配一个数据库如何使用系统的物理空间模式对象及其之间的联系则描述了关系数据库之间的设计

一个数据库从逻辑上说是由一个或多个表空间所组成,表空间是数据库中物理编组的数据仓库,每一个表空间是由段(segment)组成,一个段是由一组区(extent)所组成,一个区是由一组连续的数据库块(database block)组成,而一个数据库块对应硬盘上的一个或多个物理块。一个表空间存放一个或多个数据库的物理文件(即数据文件)一个数据库中的数据被逻辑地存储在表空间上。

表空间(tablespace)

Oracle数据库被划分为一个或多个称为表空间的逻辑结构,它包括两类表空间,System表空间和非System表空间,其中,System表空间是安装数据库时自动建立的,它包含数据库的全部数据字典,存储过程、包、函数和触发器的定义以及系统回滚段。除此之外,还能包含用户数据。。

一个表空间包含许多段,每个段有一些可以不连续的区组成,每个区由一组连续的数据块组成,数据块是数据库进行 *** 作的最小单位。

每个表空间对应一个或多个数据文件,每个数据文件只能属于一个表空间。

数据库块(database block)

数据库块也称逻辑块或ORACLE块,它对应磁盘上一个或多个物理块,它的大小由初始化参数db-block-size(在文件initora中)决定,典型的大小是2k。Pckfree 和pctused 两个参数用来优化数据块空间的使用。

区(extent)

区是由一组连续的数据块所组成的数据库存储空间分配的逻辑单位。

段(segment)

段是一个或多个不连续的区的 ,它包括一个表空间内特定逻辑结构的所有数据,段不能跨表空间存放。Oracle数据库包括数据段、索引段、临时段、回滚段等。

模式对象(schema object)

Oracle数据库的模式对象包括表、视图、序列、同意词、索引、触发器、存>>

问题八:sql server中架构是什么意思 架构(Schema)是一组数据库对象的 ,它被单个负责人(可以是用户或角色)所拥有并构成唯一命名空间。你可以将架构看成是对象的容器。

在 SQL Server 2000 中,用户(User)和架构是隐含关联的,即每个用户拥有与其同名的架构。因此要删除一个用户,必须先删除或修改这个用户所拥有的所有数据库对象。

在 SQL Server 2005 中,架构和创建它的数据库用户不再关联,完全限定名(fully-qualified name)现在包含4个部分:serverdatabaseschemaobject

1 体系结构(Architecture)

体系结构亦可称为架构,所谓软件架构,根据Perry 和Wolfe之定义:Software Architecture = {Elements,Forms, Rationale / Constraint },也就是软件主架构 = {组件元素,元素互助合作之模式,基础要求与限制}。Philippe Kruchten采用上面的定义,并说明主架构之设计就是:将各组件元素以某些理想的合作模式组织起来,以达成系统的基本功能和限制。体系结构又分为多种样式,如Pipes and Filters等。

2 框架(Framework)

框架亦可称为应用架构,框架的一般定义就是:在特定领域基于体系结构的可重用的设计。也可以认为框架是体系结构在特定领域下的应用。框架比较出名的例子就是MVC。

3 库(Library)

库应该是可重用的、相互协作的资源的 ,供开发人员进行重复调用。它与框架的主要区别在于运行时与程序的调用关系。库是被程序调用,而框架则调用程序。比较好的库有JDK。

4 设计模式(Design Pattern)

设计模式大家应该很熟悉,尤其四人帮所写的书更是家喻户晓。“四人帮”将模式描述为“在一定的环境中解决某一问题的方案”。这三个事物 ― 问题、解决方案和环境 ― 是模式的基本要素。给模式一个名称,考虑使用模式将产生的结果和提供一个或多个示例,对于说明模式也都是有用的。

5 平台(PlatForm)

由多种系统构成,其中也可以包含硬件部分。

对于以上的概念有一个比较清楚的认识之后,就可以在软件的开发过程中进行应用。理论和实践是缺一不可的,相辅相成的。没有理论的指导,实践就缺乏基础;没有实践的证明,理论就缺乏依据,因此我一直认为:对于当代的程序员,在有一定的实践基础后,必须学习更深的理论知识。无论你是从那方面先开始学习的。

在软件的开发过浮中,从许多过程实践和方法中,大致可以提炼出五大步骤:需求、分析、设计、编码、测试。而体系结构是软件的骨架,是最重要的基础。体系结构是涉及到每一步骤中。一般在获取需要的同时,就应该开始分析软件的体系结构。体系结构现在一般是各个大的功能模块组合成,然后描述各个部分的关系。

我一般认为框架是体系结构中每个模块中更细小的结构。如需要表示web技术,就会用到MVC框架,而web功能只是整个软件体系中的一个功能模块。每个框架可以有许多个实例,如用java实现的MVC框架structs。

而在框架之下就是设计模式,设计模式一般是应用中框架之中的,也可以说是对框架的补充。因为框架只是提供了一个环境,需要我们我里面填入更多的东西。无论是否应用了设计模式,你都可以实现软件的功能,而正确应用了设计模式,是我们对前人软件的设计或实现方法的一种继承,从而让你的软件更软。

体系结构是可以从不同视角来进>>

问题九:oracle数据库的架构是什么? oracle 数据库架构本质上是C/S结构的。 服务器与客户端是分开的,即时服务器和客户端是在同一机器上,他们也是按照客户端/服务器模式运行的,他们之间的进程是分开的。 希望能帮助你。

问题十:数据库中拥有的架构与成员身份有什么区别? 不同权限组合或单独就构成常角色。

不同用户创建的数据库对象不可能放在放在一起,因此就出现了容器就是所谓的架构,架构就是单个命名空间的数据实体的

以上就是关于流量cc是什么意思全部的内容,包括:流量cc是什么意思、数据仓库和数据库有什么区别和联系、对话阿里云李飞飞:关于云原生数据库的五大预判等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10188711.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存