数据库中的一对多索引编号不唯一没有关系,检索数据快速建立索引还是很有必要的。
可以利用索引快速访问数据库表中的特定信息。索引是对数据库表中一个或多个列(例如,employee 表的姓氏 (lname) 列)的值进行排序的结构。如果想按特定职员的姓来查找他或她,则与在表中搜索所有的行相比,索引有助于更快地获取信息。
索引提供指针以指向存储在表中指定列的数据值,然后根据指定的排序次序排列这些指针。数据库使用索引的方式与使用书的目录很相似:通过搜索索引找到特定的值,然后跟随指针到达包含该值的行。
在数据库关系图中,可以为选定的表创建、编辑或删除索引/键属性页中的每个索引类型。当保存附加在此索引上的表或包含此表的数据库关系图时,索引同时被保存。有关详细信息,请参见创建索引。
通常情况下,只有当经常查询索引列中的数据时,才需要在表上创建索引。索引将占用磁盘空间,并且降低添加、删除和更新行的速度。不过在多数情况下,索引所带来的数据检索速度的优势大大超过它的不足之处。然而,如果应用程序非常频繁地更新数据,或磁盘空间有限,那么最好限制索引的数量。
索引类型
根据数据库的功能,可在数据库设计器中创建三种类型的索引 — 唯一索引、主键索引和聚集索引。
提示 尽管唯一索引有助于找到信息,但为了获得最佳性能,建议使用主键约束或唯一约束。
唯一索引
唯一索引不允许两行具有相同的索引值。
主键索引
数据库表通常有一列或列组合,其值用来唯一标识表中的每一行。该列称为表的主键。
在数据库关系图中为表定义一个主键将自动创建主键索引,主键索引是唯一索引的特殊类型。主键索引要求主键中的每个值是唯一的。
聚集索引
聚集索引中,表中各行的物理顺序与键值的逻辑(索引)顺序相同。表只能包含一个聚集索引。
如果不是聚集索引,表中各行的物理顺序与键值的逻辑顺序不匹配。聚集索引比非聚集索引有更快的数据访问速度
在 Microsoft SQL Server 数据库中可以创建聚集索引。在聚集索引中,表中各行的物理顺序与索引键值的逻辑(索引)顺序相同。表只能包含一个聚集索引。聚集索引通常可加快 UPDATE 和 DELETE *** 作的速度,因为这两个 *** 作需要读取大量的数据。创建或修改聚集索引可能要花很长时间,因为执行这两个 *** 作时要在磁盘上对表的行进行重组。
可考虑将聚集索引用于:
1:包含数量有限的唯一值的列,如 state 列只包含 50 个唯一的州代码。
2:使用下列运算符返回一个范围值的查询:BETWEEN、>、>=、< 和 <=。
3:返回大结果集的查询。 (摘自Microsoft SQL Server帮助)
聚集索引对于那些经常要搜索范围值的列特别有效。使用聚集索引找到包含第一个值的行后,便可以确保包含后续索引值的行在物理相邻。例如,如果应用程序执行的一个查询经常检索某一日期范围内的记录,则使用聚集索引可以迅速找到包含开始日期的行,然后检索表中所有相邻的行,直到到达结束日期。这样有助于提高此类查询的性能。同样,如果对从表中检索的数据进行排序时经常要用到某一列,则可以将该表在该列上聚集(物理排序),避免每次查询该列时都进行排序,从而节省成本。
当索引值唯一时,使用聚集索引查找特定的行也很有效率。例如,使用唯一雇员 ID 列 emp_id 查找特定雇员的最快速的方法,是在 emp_id 列上创建聚集索引或 PRIMARY KEY 约束。
在创建聚集索引之前,应先了解您的数据是如何被访问的。可考虑将聚集索引用于:
1 包含大量非重复值的列。
2 使用下列运算符返回一个范围值的查询:BETWEEN、>、>=、< 和 <=。
3 被连续访问的列。
4 返回大型结果集的查询。
5 经常被使用联接或 GROUP BY 子句的查询访问的列;一般来说,这些是外键列。对 ORDER BY 或 GROUP BY 子句中指定的列进行索引,可以使 SQL Server 不必对数据进行排序,因为这些行已经排序。这样可以提高查询性能。
6 OLTP 类型的应用程序,这些程序要求进行非常快速的单行查找(一般通过主键)。应在主键上创建聚集索引。
聚集索引不适用于:
1 频繁更改的列 这将导致整行移动(因为 SQL Server 必须按物理顺序保留行中的数据值)。这一点要特别注意,因为在大数据量事务处理系统中数据是易失的。
2 宽键 来自聚集索引的键值由所有非聚集索引作为查找键使用,因此存储在每个非聚集索引的叶条目内。
说明
如果该表上尚未创建聚集索引,且在创建 PRIMARY KEY 约束时未指定非聚集索引,PRIMARY KEY 约束会自动创建聚集索引。
注意事项
定义聚集索引键时使用的列越少越好,这一点很重要。如果定义了一个大型的聚集索引键,则同一个表上定义的任何非聚集索引都将增大许多,因为非聚集索引条目包含聚集键。当把 SQL 脚本保存到可用空间不足的磁盘上时,索引优化向导不返回错误。
科学的客户信息管理是凝聚客户、促进企业业务发展的重要保障。客户信息是一切交易的源泉。由于客户信息自身的特点,进行科学的客户信息管理是信息加工、信息挖掘、信息提取和再利用的需要。通过客户信息管理,可以实现客户信息利用的最大化和最优化。 网络营销中的客户信息管理是对客户信息进行收集、抽取、迁移、存储、集成、分析和实现的全过程。具体内容如下:
a客户信息的收集。客户信息的收集是客户信息管理的出发点和落脚点。客户信息的收集可以广泛地利用各种渠道和手段,最为有效的是网络营销所提供的大量信息。但也不能忽视传统的方式(例如电话咨询和面对面交谈)发挥的作用,他们可以作为因特网的有效补充,保证客户信息的全面性。
b客户信息的抽取和迁移。客户信息的抽取和迁移也是在进行客户信息的收集,但其不是直接面对客户,而是利用已有的信息进行一定的加工。因为各种行业所需的客户信息是千差万别,所以各个企业都占有大量的为本企业所用的客户信息。为了实现信息使用的高效率,有必要在各个行业之间推行一套客户信息的使用标准,最大限度地取得信息的一致性。
信息的抽取机制是建立在不同行业的客户信息基础之上。它使用信息过滤和信息模糊检索技术,在其他企业的客户信息数据库中取得所需的客户信息。它强调两个企业之间客户信息数据的相似性,从共性出发,实现信息的抽取。信息的迁移机制是从客户信息的整体角度考虑,在不同企业之间实现客户信息的共享。信息在迁移过程中忽视细微的差别,重视整体的一致性,花费较少的精力取得较大的效果。
c客户信息的存储和集成。客户信息的存储和处理技术是客户信息管理的核心技术,数据仓库技术在其中占有重要地位。因为客户信息是十分巨大的数据,为了能够实现数据使用的便捷高效,需要对使用的数据库进行慎重选择。建议采用大型的关系型数据库管理系统,并带有对并行处理、决策查询优化的组件。客户信息在存储过程中应考虑冗余问题,避免浪费大量有效的空间。客户信息的集成是指客户信息数据按照时间或空间的序列保存,并进行一定层次的划分后存储在数据库中。用户在查询、统计中都使用集成后的数据,可以提高运行效率。
d客户信息数据库的设计。客户信息数据库是以家庭或个人为单位的计算机信息处理数据库。针对不同的行业有不同的数据单元,而且客户信息数据库的更新频率较高,数据处理量逐步增大。
索引的使用原则。使用索引可以提高按索引查询的速度,但是会降低插入、删除、更新 *** 作的性能。因选择合适的填充因子,针对客户信息数据库更新频繁的特点,亦选用较小的填充因子,在数据页之间留下较多的自由空间,减少页分割和重新组织的工作。
数据的一致性和完整性。为了保证数据库的一致性和完整性,可以设计表间关联。这样关于父表和子表的 *** 作将占用系统的开销;为了提高系统的响应时间,有必要保证合理的冗余水平。
数据库性能的调整。在计算机硬件配置和网络设计确定的情况下,影响到系统性能的因素是数据库性能和客户端程序设计。数据库的逻辑设计去掉了所有冗余数据,提高了系统的吞吐速度。而对于表之间的关联查询,其性能会降低,同时也提高了客户端的编程难度。因此物理设计对于两者应折衷考虑。
数据类型的选择。数据类型的合理选择对于数据库的性能和 *** 作具有很大的影响。在该数据库中应注意避开使用Text和Image字段,日期型字段的优点是有众多的日期函数支持,但其作为查询条件时服务器的性能会降低。
e客户信息的分析和实现。客户信息的分析是客户信息数据库的落脚点,是直接为企业开展其他一系列工作服务的。客户信息的分析是指从大量的数据中提取有用的信息,该信息主要可以分为直接信息和间接信息。直接信息是可以从数据中直接取得,价值量较小,使用范围较小。而间接信息是经过加工获得的较有价值的信息。分析过程主要包括基本信息分析、统计分析、趋势分析、关联分析等。基本信息分析是利用客户的基本情况信息,分析本企业或产品的主要客户的特点,包括年龄、性别、职业、工资状况、学历、地理位置等等。统计分析是利用所有的信息进行统计,分析企业或产品的销售额、利润额、成本量等经济指标,也包括大客户分析和业务流量分析。趋势分析是利用本企业的信息和同行业其他企业的信息,并结合国民经济的整体运行状况,对长期和短期的业务状况进行预测。关联分析是利用客户信息对产品信息、市场信息、企业信息进行分析,综合评价企业的运行状况和产品的供需比例。 网络营销中客户信息管理的实施主要是指客户信息数据库的实现。在当前环境下,客户信息数据库技术中数据仓库技术是企业使用的主流,该技术的实现也表明了当代客户信息管理系统的走向。以数据仓库系统为核心技术的数据仓库型客户信息管理系统的广泛应用,为在技术实施以客户为中心的个性化服务提供了可能,又极大影响了企业业务流程的转变,使机构向“扁平化”方向发展。
数据仓库是面向主题的、集成的、稳定的、不同时间的数据集合,用以支持经营管理活动中的决策制定过程。面向主题是指数据仓库内的信息按照企业重点关心的数据(即主题)进行组织,为按主题进行决策的信息过程提供信息;集成是指数据仓库内的信息不是从各个业务系统简单抽取来得,而经过系统加工、汇总和整理,保证数据仓库内的信息是整个企业的全面信息;随时间变化数据仓库内的信息并不是关于企业当时或某一时刻的信息,而系统记录了企业从过去某个时刻到目前各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测;稳定是指一旦某个数据进入数据仓库,一般情况下将被长期保留,也就是数据仓库中一般有大量的插入和查询 *** 作,但修改和删除 *** 作比较少。
数据仓库的特点可以描述为主题突出的集成性的信息管理系统。它由源数据、仓库管理和分析工具组成。数据仓库的数据来源于多个数据源,包括本企业的内部数据,也有来自外部的相关数据。网络营销中源数据主要从开展网络营销的实践中获得,包括企业所关注的关于客户的各类信息。仓库管理是根据信息需求的要求进行数据建模,从数据源到数据仓库的数据抽取、处理和转换,确定数据存储的物理结构等。这一阶段是进行客户信息管理的基础,因为大量的源数据经过仓库管理进行了初步的处理。分析工具指完成决策所需的各种信息检索方法、联机分析方法和数据挖掘方法。这一阶段是针对企业的客户群服务的,它直接与客户发生联系,因为企业的产品企划就是在这里完成。数据仓库型客户信息系统继承了以往信息管理系统的一切手法,并以其强大的数据检索和分析功能,为企业提供了综合性的及时信息服务手段,成为客户信息管理系统发展的主流。
客户信息管理在各个方面的运用,已经显示出了强大的生命力。特别是在当今企业以网络营销为支撑来开展业务的情况下,由于网络信息的复杂性和多样性,开展信息管理迫在眉睫。客户信息管理已经也必将会成为企业生存取胜的重要一环。
数据库升级可以以app的版本号作为参照,程序升级了,数据库做升级处理。 数据库升级是先把原来数据库拷贝到另一个目录备份,在原来的DB里面把所有表先创建一个备份表出来 tb_旧表名,把新增的表和新增的字段在添进去,然后把旧表的数据遍历 insert到 临时表里,完成后把旧表删除掉,再把tb_旧表名的 改名,把tb_去掉,成功后,将备份的数据库删除调。如果有失败,把这个DB删除掉,把备份的DB拷贝回来。
数据库设计(Database Design)是指对于一个给定的应用环境,构造最优的数据库模式,建立数据库及其应用系统,使之能够有效地存储数据,满足各种用户的应用需求(信息要求和处理要求)。
在数据库领域内,常常把使用数据库的各类系统统称为数据库应用系统。
一、数据库和信息系统
(1)数据库是信息系统的核心和基础,把信息系统中大量的数据按一定的模型组织起来,提供存储、维护、检索数据的
功能,使信息系统可以方便、及时、准确地从数据库中获得所需的信息。
(2)数据库是信息系统的各个部分能否紧密地结合在一起以及如何结合的关键所在。
(3)数据库设计是信息系统开发和建设的重要组成部分。
(4)数据库设计人员应该具备的技术和知识:
数据库的基本知识和数据库设计技术
计算机科学的基础知识和程序设计的方法和技巧
软件工程的原理和方法
应用领域的知识
二、数据库设计的特点
数据库建设是硬件、软件和干件的结合
三分技术,七分管理,十二分基础数据
技术与管理的界面称之为“干件”
数据库设计应该与应用系统设计相结合
结构(数据)设计:设计数据库框架或数据库结构
行为(处理)设计:设计应用程序、事务处理等
结构和行为分离的设计
传统的软件工程忽视对应用中数据语义的分析和抽象,只要有可能就尽量推迟数据结构设计的决策早期的数据库设计致力于数据模型和建模方法研究,忽视了对行为的设计
如图:
三、数据库设计方法简述
手工试凑法
设计质量与设计人员的经验和水平有直接关系
缺乏科学理论和工程方法的支持,工程的质量难以保证
数据库运行一段时间后常常又不同程度地发现各种问题,增加了维护代价
规范设计法
手工设计方
基本思想
过程迭代和逐步求精
规范设计法(续)
典型方法:
(1)新奥尔良(New Orleans)方法:将数据库设计分为四个阶段
SBYao方法:将数据库设计分为五个步骤
IRPalmer方法:把数据库设计当成一步接一步的过程
(2)计算机辅助设计
ORACLE Designer 2000
SYBASE PowerDesigner
四、数据库设计的基本步骤
数据库设计的过程(六个阶段)
1需求分析阶段
准确了解与分析用户需求(包括数据与处理)
是整个设计过程的基础,是最困难、最耗费时间的一步
2概念结构设计阶段
是整个数据库设计的关键
通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型
3逻辑结构设计阶段
将概念结构转换为某个DBMS所支持的数据模型
对其进行优化
4数据库物理设计阶段
为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)
5数据库实施阶段
运用DBMS提供的数据语言、工具及宿主语言,根据逻辑设计和物理设计的结果
建立数据库,编制与调试应用程序,组织数据入库,并进行试运行
6数据库运行和维护阶段
数据库应用系统经过试运行后即可投入正式运行。
在数据库系统运行过程中必须不断地对其进行评价、调整与修改
设计特点:
在设计过程中把数据库的设计和对数据库中数据处理的设计紧密结合起来将这两个方面的需求分析、抽象、设计、实现在各个阶段同时进行,相互参照,相互补充,以完善两方面的设计
设计过程各个阶段的设计描述:
如图:
五、数据库各级模式的形成过程
1需求分析阶段:综合各个用户的应用需求
2概念设计阶段:形成独立于机器特点,独立于各个DBMS产品的概念模式(E-R图)
3逻辑设计阶段:首先将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式;然后根据用户处理的要求、安全性的考虑,在基本表的基础上再建立必要的视图(View),形成数据的外模式
4物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,建立索引,形成数据库内模式
六、数据库设计技巧
1 设计数据库之前(需求分析阶段)
1) 理解客户需求,询问用户如何看待未来需求变化。让客户解释其需求,而且随着开发的继续,还要经常询问客户保证其需求仍然在开发的目的之中。
2) 了解企业业务可以在以后的开发阶段节约大量的时间。
3) 重视输入输出。
在定义数据库表和字段需求(输入)时,首先应检查现有的或者已经设计出的报表、查询和视图(输出)以决定为了支持这些输出哪些是必要的表和字段。
举例:假如客户需要一个报表按照邮政编码排序、分段和求和,你要保证其中包括了单独的邮政编码字段而不要把邮政编码糅进地址字段里。
4) 创建数据字典和ER 图表
ER 图表和数据字典可以让任何了解数据库的人都明确如何从数据库中获得数据。ER图对表明表之间关系很有用,而数据字典则说明了每个字段的用途以及任何可能存在的别名。对SQL 表达式的文档化来说这是完全必要的。
5) 定义标准的对象命名规范
数据库各种对象的命名必须规范。
2 表和字段的设计(数据库逻辑设计)
表设计原则
1) 标准化和规范化
数据的标准化有助于消除数据库中的数据冗余。标准化有好几种形式,但Third Normal Form(3NF)通常被认为在性能、扩展性和数据完整性方面达到了最好平衡。简单来说,遵守3NF 标准的数据库的表设计原则是:“One Fact in One Place”即某个表只包括其本身基本的属性,当不是它们本身所具有的属性时需进行分解。表之间的关系通过外键相连接。它具有以下特点:有一组表专门存放通过键连接起来的关联数据。
举例:某个存放客户及其有关定单的3NF 数据库就可能有两个表:Customer 和Order。Order 表不包含定单关联客户的任何信息,但表内会存放一个键值,该键指向Customer 表里包含该客户信息的那一行。
事实上,为了效率的缘故,对表不进行标准化有时也是必要的。
2) 数据驱动
采用数据驱动而非硬编码的方式,许多策略变更和维护都会方便得多,大大增强系统的灵活性和扩展性。
举例,假如用户界面要访问外部数据源(文件、XML 文档、其他数据库等),不妨把相应的连接和路径信息存储在用户界面支持表里。还有,如果用户界面执行工作流之类的任务(发送邮件、打印信笺、修改记录状态等),那么产生工作流的数据也可以存放在数据库里。角色权限管理也可以通过数据驱动来完成。事实上,如果过程是数据驱动的,你就可以把相当大的责任推给用户,由用户来维护自己的工作流过程。
3) 考虑各种变化
在设计数据库的时候考虑到哪些数据字段将来可能会发生变更。
举例,姓氏就是如此(注意是西方人的姓氏,比如女性结婚后从夫姓等)。所以,在建立系统存储客户信息时,在单独的一个数据表里存储姓氏字段,而且还附加起始日和终止日等字段,这样就可以跟踪这一数据条目的变化。
字段设计原则
4) 每个表中都应该添加的3 个有用的字段
dRecordCreationDate,在VB 下默认是Now(),而在SQL Server • 下默认为GETDATE()
sRecordCreator,在SQL Server 下默认为NOT NULL DEFAULT • USER
nRecordVersion,记录的版本标记;有助于准确说明记录中出现null 数据或者丢失数据的原因 •
5) 对地址和电话采用多个字段
描述街道地址就短短一行记录是不够的。Address_Line1、Address_Line2 和Address_Line3 可以提供更大的灵活性。还有,电话号码和邮件地址最好拥有自己的数据表,其间具有自身的类型和标记类别。
6) 使用角色实体定义属于某类别的列
在需要对属于特定类别或者具有特定角色的事物做定义时,可以用角色实体来创建特定的时间关联关系,从而可以实现自我文档化。
举例:用PERSON 实体和PERSON_TYPE 实体来描述人员。比方说,当John Smith, Engineer 提升为John Smith, Director 乃至最后爬到John Smith, CIO 的高位,而所有你要做的不过是改变两个表PERSON 和PERSON_TYPE 之间关系的键值,同时增加一个日期/时间字段来知道变化是何时发生的。这样,你的PERSON_TYPE 表就包含了所有PERSON 的可能类型,比如Associate、Engineer、Director、CIO 或者CEO 等。还有个替代办法就是改变PERSON 记录来反映新头衔的变化,不过这样一来在时间上无法跟踪个人所处位置的具体时间。
7) 选择数字类型和文本类型尽量充足
在SQL 中使用smallint 和tinyint 类型要特别小心。比如,假如想看看月销售总额,总额字段类型是smallint,那么,如果总额超过了$32,767 就不能进行计算 *** 作了。
而ID 类型的文本字段,比如客户ID 或定单号等等都应该设置得比一般想象更大。假设客户ID 为10 位数长。那你应该把数据库表字段的长度设为12 或者13 个字符长。但这额外占据的空间却无需将来重构整个数据库就可以实现数据库规模的增长了。
8) 增加删除标记字段
在表中包含一个“删除标记”字段,这样就可以把行标记为删除。在关系数据库里不要单独删除某一行;最好采用清除数据程序而且要仔细维护索引整体性。
3 选择键和索引(数据库逻辑设计)
键选择原则:
1) 键设计4 原则
为关联字段创建外键。 •
所有的键都必须唯一。 •
避免使用复合键。 •
外键总是关联唯一的键字段。 •
2) 使用系统生成的主键
设计数据库的时候采用系统生成的键作为主键,那么实际控制了数据库的索引完整性。这样,数据库和非人工机制就有效地控制了对存储数据中每一行的访问。采用系统生成键作为主键还有一个优点:当拥有一致的键结构时,找到逻辑缺陷很容易。
3) 不要用用户的键(不让主键具有可更新性)
在确定采用什么字段作为表的键的时候,可一定要小心用户将要编辑的字段。通常的情况下不要选择用户可编辑的字段作为键。
4) 可选键有时可做主键
把可选键进一步用做主键,可以拥有建立强大索引的能力。
索引使用原则:
索引是从数据库中获取数据的最高效方式之一。95%的数据库性能问题都可以采用索引技术得到解决。
1) 逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。
2) 大多数数据库都索引自动创建的主键字段,但是可别忘了索引外键,它们也是经常使用的键,比如运行查询显示主表和所有关联表的某条记录就用得上。
3) 不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。
4) 不要索引常用的小型表
不要为小型数据表设置任何键,假如它们经常有插入和删除 *** 作就更别这样作了。对这些插入和删除 *** 作的索引维护可能比扫描表空间消耗更多的时间。
4 数据完整性设计(数据库逻辑设计)
1) 完整性实现机制:
实体完整性:主键
参照完整性:
父表中删除数据:级联删除;受限删除;置空值
父表中插入数据:受限插入;递归插入
父表中更新数据:级联更新;受限更新;置空值
DBMS对参照完整性可以有两种方法实现:外键实现机制(约束规则)和触发器实现机制
用户定义完整性:
NOT NULL;CHECK;触发器
2) 用约束而非商务规则强制数据完整性
采用数据库系统实现数据的完整性。这不但包括通过标准化实现的完整性而且还包括数据的功能性。在写数据的时候还可以增加触发器来保证数据的正确性。不要依赖于商务层保证数据完整性;它不能保证表之间(外键)的完整性所以不能强加于其他完整性规则之上。
3) 强制指示完整性
在有害数据进入数据库之前将其剔除。激活数据库系统的指示完整性特性。这样可以保持数据的清洁而能迫使开发人员投入更多的时间处理错误条件。
4) 使用查找控制数据完整性
控制数据完整性的最佳方式就是限制用户的选择。只要有可能都应该提供给用户一个清晰的价值列表供其选择。这样将减少键入代码的错误和误解同时提供数据的一致性。某些公共数据特别适合查找:国家代码、状态代码等。
5) 采用视图
为了在数据库和应用程序代码之间提供另一层抽象,可以为应用程序建立专门的视图而不必非要应用程序直接访问数据表。这样做还等于在处理数据库变更时给你提供了更多的自由。
5 其他设计技巧
1) 避免使用触发器
触发器的功能通常可以用其他方式实现。在调试程序时触发器可能成为干扰。假如你确实需要采用触发器,你最好集中对它文档化。
2) 使用常用英语(或者其他任何语言)而不要使用编码
在创建下拉菜单、列表、报表时最好按照英语名排序。假如需要编码,可以在编码旁附上用户知道的英语。
3) 保存常用信息
让一个表专门存放一般数据库信息非常有用。在这个表里存放数据库当前版本、最近检查/修复(对Access)、关联设计文档的名称、客户等信息。这样可以实现一种简单机制跟踪数据库,当客户抱怨他们的数据库没有达到希望的要求而与你联系时,这样做对非客户机/服务器环境特别有用。
4) 包含版本机制
在数据库中引入版本控制机制来确定使用中的数据库的版本。时间一长,用户的需求总是会改变的。最终可能会要求修改数据库结构。把版本信息直接存放到数据库中更为方便。
5) 编制文档
对所有的快捷方式、命名规范、限制和函数都要编制文档。
采用给表、列、触发器等加注释的数据库工具。对开发、支持和跟踪修改非常有用。
对数据库文档化,或者在数据库自身的内部或者单独建立文档。这样,当过了一年多时间后再回过头来做第2 个版本,犯错的机会将大大减少。
6) 测试、测试、反复测试
建立或者修订数据库之后,必须用用户新输入的数据测试数据字段。最重要的是,让用户进行测试并且同用户一道保证选择的数据类型满足商业要求。测试需要在把新数据库投入实际服务之前完成。
7) 检查设计
在开发期间检查数据库设计的常用技术是通过其所支持的应用程序原型检查数据库。换句话说,针对每一种最终表达数据的原型应用,保证你检查了数据模型并且查看如何取出数据。
以上就是关于数据库中创建一对多索引 编号不唯一怎么办,全部的内容,包括:数据库中创建一对多索引 编号不唯一怎么办,、客户信息的信息管理、开发安卓app版本升级的数据库应该怎么设计啊。。等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)