查看Kafka某Topic的Partition详细信息时,使用如下哪个命令()
Abin/kafka-topicssh--create
Bbin/kafka-topicssh--delete
Cbin/kafka-topicssh--describe(正确答案)
Dbin/kafka-topicssh--1ist
小马最近学习了《深入理解kafka 核心设计与实践原理》朱忠华 著 一书,机缘巧合中又看到了这篇文章,觉得整理得很是详细和全面,图文并茂很直观,在此摘录。
精华总结:依靠主题分区来类似分库分表的方式提高性能,用 副本主从 同步+ ISR(偏移量和HW) 来保证消息队列的可靠性,消费者提交 消费位移 来保证消息不丢失和重复消费等,用ZK来处理 服务发现 ,负载均衡,选举,集群管理,消费位移记录(以被推荐记录于kafka主题内)等。
HW之前的消息才能被消费者拉取,理解为都同步备份完了,才算生产者消息提交成功,对消费者可见。这种ISR机制影响了性能但是保证了可靠性,保证消息不丢失。消费位移提交,默认的是自动提交,异常下消息会重复消费会丢失,但可以参数配置手动提交,自行在业务处理完再提交。消费者拉的方式自主获取消费,便于消费者自行控制消费速率。默认分区规则是哈希一致性方式。
相比 Redis消息队列 本身的可靠性就不如,被消费者拉取完就认为消费完了,消息丢失,所以一般需要自行维护ack机制。
Kafka的消息是保存或缓存在磁盘上的,一般认为在磁盘上读写数据是会降低性能的,因为寻址会比较消耗时间,但是实际上,Kafka的特性之一就是高吞吐率。即使是普通的服务器, Kafka也可以轻松支持每秒百万级的写入请求 ,超过了大部分的消息中间件,这种特性也使得Kafka在日志处理等海量数据场景广泛应用。 Kafka速度的秘诀在于 ,它把所有的消息都变成一个批量的文件,并且进行合理的批量压缩,减少网络IO损耗,通过mmap提高I/O速度,写入数据的时候由于单个Partion是末尾添加所以速度最优;读取数据的时候配合sendfile直接暴力输出。
一个典型的 Kafka 体系架构包括若干 Producer(消息生产者),若干 broker(作为 Kafka 节点的服务器),若干 Consumer(Group),以及一个 ZooKeeper 集群。Kafka通过 ZooKeeper 管理集群配置、选举 Leader 以及在 consumer group 发生变化时进行 Rebalance(即消费者负载均衡,在下一课介绍)。Producer 使用 push(推)模式将消息发布到 broker,Consumer 使用 pull(拉)模式从 broker 订阅并消费消息。
Kafka 节点的 broker涉及 Topic、Partition 两个重要概念
在 Kafka 架构中,有几个术语:
Producer :生产者,即消息发送者,push 消息到 Kafka 集群中的 broker(就是 server)中;
Broker :Kafka 集群由多个 Kafka 实例(server) 组成,每个实例构成一个 broker,说白了就是服务器;
Topic :producer 向 kafka 集群 push 的消息会被归于某一类别,即Topic,这本质上只是一个逻辑概念,面向的对象是 producer 和 consumer,producer 只需要关注将消息 push 到哪一个 Topic 中,而 consumer 只需要关心自己订阅了哪个 Topic;
Partition :每一个 Topic 又被分为多个 Partitions,即物理分区;出于负载均衡的考虑,同一个 Topic 的 Partitions 分别存储于 Kafka 集群的多个 broker 上;而为了提高可靠性,这些 Partitions 可以由 Kafka 机制中的 replicas 来设置备份的数量;如上面的框架图所示,每个 partition 都存在两个备份;
Consumer :消费者,从 Kafka 集群的 broker 中 pull 消息、消费消息;
Consumer group :high-level consumer API 中,每个 consumer 都属于一个 consumer-group,每条消息只能被 consumer-group 中的一个 Consumer 消费,但可以被多个 consumer-group 消费;
replicas :partition 的副本,保障 partition 的高可用;
leader :replicas 中的一个角色, producer 和 consumer 只跟 leader 交互;
follower :replicas 中的一个角色,从 leader 中复制数据,作为副本,一旦 leader 挂掉,会从它的 followers 中选举出一个新的 leader 继续提供服务;
controller :Kafka 集群中的其中一个服务器,用来进行 leader election 以及 各种 failover;
ZooKeeper :Kafka 通过 ZooKeeper 来存储集群的 meta 信息等,文中将详述。
一个 topic 可以认为是一类消息,每个 topic 将被分成多个 partition,每个 partition 在存储层面是 append log 文件。任何发布到此 partition 的消息都会被追加到log文件的尾部,每条消息在文件中的位置称为 offset(偏移量),offset 为一个 long 型的数字,它唯一标记一条消息。 Kafka 机制中,producer push 来的消息是追加(append)到 partition 中的,这是一种顺序写磁盘的机制,效率远高于随机写内存,如下示意图:
Kafka 中 topic 的每个 partition 有一个预写式的日志文件,虽然 partition 可以继续细分为若干个 segment 文件,但是对于上层应用来说,仍然可以将 partition 看成最小的存储单元(一个有多个 segment 文件拼接的 “巨型” 文件),每个 partition 都由一些列有序的、不可变的消息组成,这些消息被连续的追加到 partition 中。
上图中有两个新名词:HW 和 LEO。这里先介绍下 LEO,LogEndOffset 的缩写,表示每个 partition 的 log 最后一条 Message 的位置。HW 是 HighWatermark 的缩写,是指 consumer 能够看到的此 partition 的位置,这个涉及到多副本的概念,这里先提及一下,下文再详述。
言归正传,为了提高消息的可靠性,Kafka 每个 topic 的 partition 有 N 个副本(replicas),其中 N(大于等于 1)是 topic 的复制因子(replica fator)的个数。Kafka 通过多副本机制实现故障自动转移,当 Kafka 集群中出现 broker 失效时,副本机制可保证服务可用。对于任何一个 partition,它的 N 个 replicas 中,其中一个 replica 为 leader,其他都为 follower,leader 负责处理 partition 的所有读写请求,follower 则负责被动地去复制 leader 上的数据。如下图所示,Kafka 集群中有 4 个 broker,某 topic 有 3 个 partition,且复制因子即副本个数也为 3:
如果 leader 所在的 broker 发生故障或宕机,对应 partition 将因无 leader 而不能处理客户端请求,这时副本的作用就体现出来了:一个新 leader 将从 follower 中被选举出来并继续处理客户端的请求。
上一节中讲到了同步副本队列 ISR(In-Sync Replicas)。虽然副本极大的增强了可用性,但是副本数量对 Kafka 的吞吐率有一定影响。默认情况下 Kafka 的 replica 数量为 1,即每个 partition 都只有唯一的 leader,无 follower,没有容灾能力。为了确保消息的可靠性,生产环境中,通常将其值(由 broker 的参数 offsetstopicreplicationfactor 指定)大小设置为大于 1,比如 3。 所有的副本(replicas)统称为 Assigned Replicas,即 AR。ISR 是 AR 中的一个子集,由 leader 维护 ISR 列表,follower 从 leader 同步数据有一些延迟(由参数 replicalagtimemaxms 设置超时阈值),超过阈值的 follower 将被剔除出 ISR, 存入 OSR(Outof-Sync Replicas)列表,新加入的 follower 也会先存放在 OSR 中。AR=ISR+OSR。
上面一节还涉及到一个概念,即 HW。HW 俗称高水位,HighWatermark 的缩写,取一个 partition 对应的 ISR 中最小的 LEO 作为 HW,consumer 最多只能消费到 HW 所在的位置。另外每个 replica 都有 HW,leader 和 follower 各自负责更新自己的 HW 的状态。对于 leader 新写入的消息,consumer 不能立刻消费,leader 会等待该消息被所有 ISR 中的 replicas 同步后更新 HW,此时消息才能被 consumer 消费。这样就保证了如果 leader 所在的 broker 失效,该消息仍然可以从新选举的 leader 中获取。对于来自内部 broker 的读取请求,没有 HW 的限制。
下图详细的说明了当 producer 生产消息至 broker 后,ISR 以及 HW 和 LEO 的流转过程:
由此可见,Kafka 的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的 follower 都复制完,这条消息才会被 commit,这种复制方式受限于复制最慢的 follower,会极大的影响吞吐率。而异步复制方式下,follower 异步的从 leader 复制数据,数据只要被 leader 写入 log 就被认为已经 commit,这种情况下如果 follower 都还没有复制完,落后于 leader 时,突然 leader 宕机,则会丢失数据,降低可靠性。而 Kafka 使用 ISR 的策略则在可靠性和吞吐率方面取得了较好的平衡。
Kafka 的 ISR 的管理最终都会反馈到 ZooKeeper 节点上,具体位置为:
/brokers/topics/[topic]/partitions/[partition]/state
目前,有两个地方会对这个 ZooKeeper 的节点进行维护。
Controller 来维护:Kafka 集群中的其中一个 Broker 会被选举为 Controller,主要负责 Partition 管理和副本状态管理,也会执行类似于重分配 partition 之类的管理任务。在符合某些特定条件下,Controller 下的 LeaderSelector 会选举新的 leader,ISR 和新的 leader_epoch 及 controller_epoch 写入 ZooKeeper 的相关节点中。同时发起 LeaderAndIsrRequest 通知所有的 replicas。
leader 来维护:leader 有单独的线程定期检测 ISR 中 follower 是否脱离 ISR,如果发现 ISR 变化,则会将新的 ISR 的信息返回到 ZooKeeper 的相关节点中。
考虑这样一种场景:acks=-1,部分 ISR 副本完成同步,此时leader挂掉,如下图所示:follower1 同步了消息 4、5,follower2 同步了消息 4,与此同时 follower2 被选举为 leader,那么此时 follower1 中的多出的消息 5 该做如何处理呢?
类似于木桶原理,水位取决于最低那块短板。
如上图,某个 topic 的某 partition 有三个副本,分别为 A、B、C。A 作为 leader 肯定是 LEO 最高,B 紧随其后,C 机器由于配置比较低,网络比较差,故而同步最慢。这个时候 A 机器宕机,这时候如果 B 成为 leader,假如没有 HW,在 A 重新恢复之后会做同步(makeFollower) *** 作,在宕机时 log 文件之后直接做追加 *** 作,而假如 B 的 LEO 已经达到了 A 的 LEO,会产生数据不一致的情况,所以使用 HW 来避免这种情况。 A 在做同步 *** 作的时候,先将 log 文件截断到之前自己的 HW 的位置,即 3,之后再从 B 中拉取消息进行同步。
如果失败的 follower 恢复过来,它首先将自己的 log 文件截断到上次 checkpointed 时刻的 HW 的位置,之后再从 leader 中同步消息。leader 挂掉会重新选举,新的 leader 会发送 “指令” 让其余的 follower 截断至自身的 HW 的位置然后再拉取新的消息。
当 ISR 中的个副本的 LEO 不一致时,如果此时 leader 挂掉,选举新的 leader 时并不是按照 LEO 的高低进行选举,而是按照 ISR 中的顺序选举。
在 consumer 对指定消息 partition 的消息进行消费的过程中,需要定时地将 partition 消息的 消费进度 Offset 记录到 ZooKeeper上 ,以便在该 consumer 进行重启或者其它 consumer 重新接管该消息分区的消息消费权后,能够从之前的进度开始继续进行消息消费。Offset 在 ZooKeeper 中由一个专门节点进行记录,其节点路径为:
#节点内容就是Offset的值。/consumers/[group_id]/offsets/[topic]/[broker_id-partition_id]
PS:Kafka 已推荐将 consumer 的 Offset 信息保存在 Kafka 内部的 topic 中,即:
__consumer_offsets(/brokers/topics/__consumer_offsets)
并且默认提供了 kafka_consumer_groupssh 脚本供用户查看consumer 信息(命令:sh kafka-consumer-groupssh –bootstrap-server –describe –group )。在当前版本中,offset 存储方式要么存储在本地文件中,要么存储在 broker 端,具体的存储方式取决 offsetstoremethod 的配置,默认是存储在 broker 端。
在基于 Kafka 的分布式消息队列中,ZooKeeper 的作用有:broker 注册、topic 注册、producer 和 consumer 负载均衡、维护 partition 与 consumer 的关系、记录消息消费的进度以及 consumer 注册等。
参考原文:
再谈基于 Kafka 和 ZooKeeper 的分布式消息队列原理
在output->elasticsearch下增加一个index配置 output { elasticsearch { hosts => ["19216810166:9200"] index => "test_system_log" } } 查看的的话,就装kibana好了,在kibana的settings->indices页面,在页面里面的输入框输入test_system_。
按照网上的方法尝试了/kafka-run-classsh kafkatoolsConsumerOffsetChecker --zookeeper :2181 --group --topic
发现并不管用,查看了kafka 的jar包,貌似ConsumerOffsetChecker 类已经被移除,上github上看了下kafka的源码,告知我:
不管是kafka-consumer-offset-checkersh脚本还是run-classsh kafkatoolsConsumerOffsetChecker都已经失效,可以使用kafka-consumer-groupssh。
使用如下配置:
当然,这种方法是针对高级级kafka读取api,因为高级级api需要按照group中的consumer按照offset来读取数据,并且所有维护offset信息都保存在zookeeper中。但是低级api不需要group,offset由consumer自行维护,所以针对这类topic用户是没法使用这个命令读取结果的。
我们在使用kafka的过程中有时候可以需要查看我们生产的消息的各种信息,这些都是被记录在卡夫卡的log文件中的。由于log文件的特殊格式,我们是无法直接查看log文件中的信息的。本文提供一下方式查看kafka的log文件中所记录的信息。
执行命令
bin/kafka-run-classsh kafkatoolsDumpLogSegments
我们可以看到都需要哪些参数,根据不同的需求我们可以选择不同的参数。
执行如下命令查看某个log文件
bin/kafka-run-classsh kafkatoolsDumpLogSegments --files /tmp/kafka-logs/test3-0/00000000000000000000log --print-data-log
这里 --print-data-log 是表示查看消息内容的,不加此项是查看不到详细的消息内容。如果要查看多个log文件可以用逗号分隔。
Kafka是由LinkedIn设计的一个高吞吐量、分布式、基于发布订阅模式的消息系统,使用Scala编写,它以可水平扩展、可靠性、异步通信和高吞吐率等特性而被广泛使用。目前越来越多的开源分布式处理系统都支持与Kafka集成,其中SparkStreaming作为后端
以上就是关于查看Kafka某Topic的Partition详细信息时,使用如下哪个命令()全部的内容,包括:查看Kafka某Topic的Partition详细信息时,使用如下哪个命令()、[转载]kafka入门笔记、怎么查看logstash发送到kafka上的数据等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)