主要可以分为下面四个数据库:
1、模糊数据库,指能够处理模糊数据的数据库。一般的数据库都是以二直逻辑和精确的数据工具为基础的,不能表示许多模糊不清的 事情。随着模糊数学理论体系的建立,人们可以用数量来描述模糊事件并能进行模糊运算。这样就可以把不完全性、不确定性、模糊性引入数据库系统中,从而形成模糊数据库。模糊数据库研究主要有两方面,首先是如何在数据库中存放模糊数据;其次是定义各种运算建立模糊数据上的函数。模糊数的表示主要有模糊区间数、模糊中心数、模糊集合数和隶属函数等。
2、统计数据库,管理统计数据的数据库系统。这类数据库包含有大量的数据记录,但其目的是向用户提供各种统计汇总信息,而不是提供单个记录的信息。
3、网状数据库,处理以记录类型为结点的网状数据模型的数据库。处理方法是将网状结构分解成若干棵二级树结构,称为系。系类型 是二个或二个以上的记录类型之间联系的一种描述。在一个系类型中,有一个记录类型处于主导地位,称为系主记录类 型,其它称为成员记录类型。系主和成员之间的联系是一对多的联系。网状数据库的代表是DBTG系统。1969年美国的 CODASYL组织提出了一份“DBTG报告”,以后,根据DBTG报告实现的系统一般称 为DBTG系统。现有的网状数据库系统大都是采用DBTG方案的。DBTG系统是典型的三级结构体系:子模式、模式、存储模式。相应的数据定义语言分别称为子模式定义语言SSDDL,模式定义语言SDDL,设备介质控制语言DMCL。另外还有数据 *** 纵语言DML。
4、演绎数据库,是指具有演绎推理能力的数据库。一般地,它用一个数据库管理系统和一个规则管理系统来实现。将推理用的事实数据存放在数据库中,称为外延数据库;用逻辑规则定义要导出的事实,称为内涵数据库。主要研究内容为,如何有效地计 算逻辑规则推理。具体为:递归查询的优化、规则的一致性维护。
目前最常用的三种数据模型为层次模型、网状模型和关系模型。
一、层次模型
层次模型将数据组织成一对多关系的结构,层次结构采用关键字来访问其中每一层次的每一部分。
层次模型发展最早,它以树结构为基本结构,典型代表是IMS模型。
优点是存取方便且速度快;结构清晰,容易理解;数据修改和数据库扩展容易实现;检索关键属性十分方便。
二、网状模型
网状模型用连接指令或指针来确定数据间的显式连接关系,是具有多对多类型的数据组织方式。
网状数据模型通过网状结构表示数据间联系,开发较早且有一定优点,目前使用仍较多,典型代表是 DBTG模型。
优点是能明确而方便地表示数据间的复杂关系。
三、关系模型
关系模型以记录组或数据表的形式组织数据,以便于利用各种地理实体与属性之间的关系进行存储和变换,不分层也无指针,是建立空间数据和属性数据之间关系的一种非常有效的数据组织方法。
优点在于结构特别灵活,概念单一,满足所有布尔逻辑运算和数学运算规则形成的查询要求;能搜索、组合和比较不同类型的数据;增加和删除数据非常方便。
数据(data)是描述事物的符号记录。模型(Model)是现实世界的抽象。数据模型(Data Model)是数据特征的抽象,是数据库管理的教学形式框架。数据库系统中用以提供信息表示和 *** 作手段的形式构架。数据模型包括数据库数据的结构部分、数据库数据的 *** 作部分和数据库数据的约束条件
首先,先介绍一下,什么是数据模型?
数据模型是现实世界数据特征的抽象,用于描述一组数据的概念和定义。数据模型是数据库中数据的存储方式,是数据库系统的基础。在数据库中,数据的物理结构又称数据的存储结构,就是数据元素在计算机存储器中的表示及其配置;数据的逻辑结构则是指数据元素之间的逻辑关系,它是数据在用户或程序员面前的表现形式,数据的存储结构不一定与逻辑结构一致。
数据模型的分类有三种:
第一种:层次模型 层次模型是数据库系统最早使用的一种模型,它的数据结构是一棵“有向树”。根结点在最上端,层次最高,子结点在下,逐层排列。
第二种是:网状模型 网状模型以网状结构表示实体与实体之间的联系。网中的每一个结点代表一个记录类型,联系用链接指针来实现。网状模型可以表示多个从属关系的联系,也可以表示数据间的交叉关系,即数据间的横向关系与纵向关系,它是层次模型的扩展。
第三种是:关系模型 系模型以二维表结构来表示实体与实体之间的联系,它是以关系数学理论为基础的。关系模型的数据结构是一个“二维表框架”组成的集合。每个二维表又可称为关系。在关系模型中, *** 作的对象和结果都是二维表。关系模型是目前最流行的数据库模型。
为什么要建立数据模型?
当今的商业决策对对数据依赖越来越强烈。然而,正确而连贯的数据流对商业用户做出快速、灵活的决策起到决定性的作用。建立正确的数据流和数据结构才能保证最好的结果。
如何进行数据模型设计?
1:首先是要了解业务然后建立概念模型,确定实体以及实体关系。
2:在概念模型的基础上生成逻辑模型,确定实体属性,标准化数据(消除多值字段达到第一范式;消除部分依赖达到第二范式;消除传递依赖达到第三范式)。
3:模型验证:通过具体的业务来验证模型是否能满足要求。
4:在逻辑模型的基础上生产物理模型。
在建立数据模型的时候需要注意:
1三少 整个模型中表应该尽量的少;在一个表中字段应该尽量的少同时复合主键字段应尽量的少
2如果在大数据量或者高并发的情况下,要充分考虑数据库的压力,事先要考虑哪些表可能是热表。要尽量的降低模块的耦合。如果使用的是oracle RAC 的话要考虑一下多实例竞争的问题,不同的模块访问不同的实例。
3一定要做压力测试、要做充分的压力测试,要不上线后会死的很惨,移动总部的一个web项目应为没有做充分的压力测试,导致上线后不的不挂维护页面,动用了n多的资源去解决问题。
4在做模型设计的时候要考虑项目的各个生命周期阶段对模型的要求,不能仅仅把眼光限制在功能的实现,例如要考虑模型对以后维护的支持,对于大表的数据如何进行清除、转历史,显然delete、insert是首先可以想到的但是不可行的方法,建议做分区转换。
5数据模型设计对系统可变性的支撑:业务系统的变化点通常是流程相关部分,这部分会随着不同的公司、公司的不同发展阶段而变化,因此最好将这部分单独建模,独立于系统核心模型之外。
两大类数据模型:数据模型分为2类(分属2个不同的层次,在开发和使用数据库中使用不同的模型)。
概念模型,也称信息模型,它是按用户的观点来对数据和信息建模,用于数据库设计。
逻辑模型和物理模型,逻辑模型主要包括:网状模型、层次模型、关系模型、面向对象模型等,按计算机系统的观点对数据建模,用于DBMS实现。
物理模型,是对数据最底层的抽象,描述数据在系统内部的表示方式和存取方法,在磁盘或磁带上的存储方式和存取方法。
概念模型:信息世界中的基本概念。
用途:数据库设计人员和用户之间进行交流的语言。但要考E-R图!
最常用的数据模型:非关系模型,有层次模型和网状模型;关系模型;面向对象模型、对象关系模型。
以上就是关于数据库类型是根据什么划分的全部的内容,包括:数据库类型是根据什么划分的、常用的数据模型包括哪些、数据库简答题 解释数据模型的概念,为什么要将数据模型分成两个层次等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)