入门大数据需要学习什么内容

入门大数据需要学习什么内容,第1张

分享大数据学习路线:

第一阶段为JAVASE+MYSQL+JDBC

主要学习一些Java语言的概念,如字符、bai流程控制、面向对象、进程线程、枚举反射等,学习MySQL数据库的安装卸载及相关 *** 作,学习JDBC的实现原理以及Linux基础知识,是大数据刚入门阶段。

第二阶段为分布式理论简介

主要讲解CAP理论、数据分布方式、一致性、2PC和3PC、大数据集成架构。涉及的知识点有Consistency一致性、Availability可用性、Partition

tolerance分区容忍性、数据量分布、2PC流程、3PC流程、哈希方式、一致性哈希等。

第三阶段为数据存储与计算(离线场景)

主要讲解协调服务ZK(1T)、数据存储hdfs(2T)、数据存储alluxio(1T)、数据采集flume、数据采集logstash、数据同步Sqoop(05T)、数据同步datax(05T)、数据同步mysql-binlog(1T)、计算模型MR与DAG(1T)、hive(5T)、Impala(1T)、任务调度Azkaban、任务调度airflow等。

第四部分为数仓建设

主要讲解数仓仓库的历史背景、离线数仓项目-伴我汽车(5T)架构技术解析、多维数据模型处理kylin(35T)部署安装、离线数仓项目-伴我汽车升级后加入kylin进行多维分析等;

第五阶段为分布式计算引擎

主要讲解计算引擎、scala语言、spark、数据存储hbase、redis、kudu,并通过某p2p平台项目实现spark多数据源读写。

第六阶段为数据存储与计算(实时场景)

主要讲解数据通道Kafka、实时数仓druid、流式数据处理flink、SparkStreaming,并通过讲解某交通大数让你可以将知识点融会贯通。

第七阶段为数据搜索

主要讲解elasticsearch,包括全文搜索技术、ES安装 *** 作、index、创建索引、增删改查、索引、映射、过滤等。

第八阶段为数据治理

主要讲解数据标准、数据分类、数据建模、图存储与查询、元数据、血缘与数据质量、Hive Hook、Spark Listener等。

第九阶段为BI系统

主要讲解Superset、Graphna两大技术,包括基本简介、安装、数据源创建、表 *** 作以及数据探索分析。

第十阶段为数据挖掘

主要讲解机器学习中的数学体系、Spark Mlib机器学习算法库、Python scikit-learn机器学习算法库、机器学习结合大数据项目。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

很多同学接触Linux不多,对Linux平台的开发更是一无所知。而现在的趋势越来越表明,作为一 个优秀的软件开发人员,或计算机IT行业从业人员,掌握Linux是一种很重要的谋生资源与手段。下来我将会结合自己的几年的个人开发经验,及对 Linux,更是类UNIX系统,及开源软件文化,谈谈Linux的学习方法与学习中应该注意的一些事。

就如同刚才说的,很多同学以前可能连Linux是什么都不知道,对UNIX更是一无所知。所以我们从最基础的讲起,对于Linux及UNIX的历史我们不做多谈,直接进入入门的学习。

Linux入门是很简单的,问题是你是否有耐心,是否爱折腾,是否不排斥重装一类的大修。没折腾可以说是学不好Linux的,鸟哥说过,要真正了解Linux的分区机制,对LVM使用相当熟练,没有20次以上的Linux装机经验是积累不起来的,所以一定不要怕折腾。

由于大家之前都使用Windows,所以我也尽可能照顾这些“菜鸟”。我的推荐,如果你第一次接触Linux,那么首先在虚拟机中尝试它。虚拟机我推荐Virtual Box,我并不主张使用VM,原因是VM是闭源的,并且是收费的,我不希望推动盗版。当然如果你的Money足够多,可以尝试VM,但我要说的是即使是VM,不一定就一定好。付费的软件不一定好。首先,Virtual Box很小巧,Windows平台下安装包在80MB左右,而VM动辄600MB,虽然功能强大,但资源消耗也多,何况你的需求Virtual Box完全能够满足。所以,还是自己选。如何使用虚拟机,是你的事,这个我不教你,因为很简单,不会的话Google或Baidu都可以,英文好的可以直接看官方文档。

现在介绍Linux发行版的知识。正如你所见,Linux发行版并非Linux,Linux仅是指 *** 作系统的内核,作为科班出生的你不要让我解释,我也没时间。我推荐的发行版如下:

UBUNTU适合纯菜鸟,追求稳定的官方支持,对系统稳定性要求较弱,喜欢最新应用,相对来说不太喜欢折腾的开发者。

Debian,相对UBUNTU难很多的发行版,突出特点是稳定与容易使用的包管理系统,缺点是企业支持不足,为社区开发驱动。

Arch,追逐时尚的开发者的首选,优点是包更新相当快,无缝升级,一次安装基本可以一直运作下去,没有如UBUNTU那样的版本概念,说的专业点叫滚动升级,保持你的系统一定是最新的。缺点显然易见,不稳定。同时安装配置相对Debian再麻烦点。

Gentoo,相对Arch再难点,考验使用者的综合水平,从系统安装到微调,内核编译都亲历亲为,是高手及黑客显示自己技术手段,按需配置符合自己要求的系统的首选。

Slackware与Gentoo类似。

CentOS,社区维护的RedHat的复刻版本,完全使用RedHat的源码重新编译生成,与RedHat的兼容性在理论上来说是最好的。如果你专注于Linux服务器,如网络管理,架站,那么CentOS是你的选择。

LFS,终极黑客显摆工具,完全从源代码安装,编译系统。安装前你得到的只有一份文档,你要做的就是照文档你的说明,一步步,一条条命令,一个个软件包的去构建你的Linux,完全由你自己控制,想要什么就是什么。如果你做出了LFS,证明你的Linux功底已经相当不错,如果你能拿LFS文档活学活用,再将Linux从源代码开始移植到嵌入式系统,我敢说中国的企业你可以混的很好。

你得挑一个适合你的系统,然后在虚拟机安装它,开始使用它。如果你想快速学会Linux,我有一个建议就是忘记图形界面,不要想图形界面能不能提供你问题的答案,而是满世界的去找,去问,如何用命令行解决你的问题。在这个过程中,你最好能将Linux的命令掌握的不错,起码常用的命令得知道,同时建立了自己的知识库,里面是你积累的各项知识。

再下个阶段,你需要学习的是Linux平台的C/C++开发,同时还有Bash脚本编程,如果你对Java兴趣很深还有Java。同样,建议你抛弃掉图形界面的IDE,从VIM开始,为什么是VIM,而不是Emacs,我无意挑起编辑器大战,但我觉得VIM适合初学者,适合手比较笨,脑袋比较慢的开发者。Emacs的键位太多,太复杂,我很畏惧。然后是GCC,Make,Eclipse(Java,C++或者)。虽然将C++列在了Eclipse中,但我并不推荐用IDE开发C++,因为这不是Linux的文化,容易让你忽略一些你应该注意的问题。IDE让你变懒,懒得跟猪一样。如果你对程序调试,测试工作很感兴趣,GDB也得学的很好,如果不是GDB也是必修课。这是开发的第一步,注意我并没有提过一句Linux系统API的内容,这个阶段也不要关心这个。你要做的就是积累经验,在Linux平台的开发经验。我推荐的书如下:C语言程序设计,谭浩强的也可以。C语言,白皮书当然更好。C++推荐C++ Primer Plus,Java我不喜欢,就不推荐了。工具方面推荐VIM的官方手册,GCC中文文档,GDB中文文档,GNU开源软件开发指导(电子书),汇编语言程序设计(让你对库,链接,内嵌汇编,编译器优化选项有初步了解,不必深度)。

如果你这个阶段过不了就不必往下做了,这是底线,最基础的基础,否则离开,不要霍霍Linux开发。不专业的Linux开发者作出的程序是与Linux文化或UNIX文化相背的,程序是走不远的,不可能像Bash,VIM这些神品一样。所以做不好干脆离开。

接下来进入Linux系统编程,不二选择,APUE,UNIX环境高级编程,一遍一遍的看,看10遍都嫌少,如果你可以在大学将这本书翻烂,里面的内容都实践过,有作品,你口头表达能力够强,你可以在面试时说服所有的考官。(可能有点夸张,但APUE绝对是圣经一般的读物,即使是Windows程序员也从其中汲取养分,Google创始人的案头书籍,扎尔伯克的床头读物。)

这本书看完后你会对Linux系统编程有相当的了解,知道Linux与Windows平台间开发的差异在哪?它们的优缺点在哪?我的总结如下:做Windows平台开发,很苦,微软的系统API总在扩容,想使用最新潮,最高效的功能,最适合当前流行系统的功能你必须时刻学习。Linux不是,Linux系统的核心API就100来个,记忆力好完全可以背下来。而且经久不变,为什么不变,因为要同UNIX兼容,符合POSIX标准。所以Linux平台的开发大多是专注于底层的或服务器编程。这是其优点,当然图形是Linux的软肋,但我站在一个开发者的角度,我无所谓,因为命令行我也可以适应,如果有更好的图形界面我就当作恩赐吧。另外,Windows闭源,系统做了什么你更本不知道,永远被微软牵着鼻子跑,想想如果微软说Win8不支持QQ,那腾讯不得哭死。而Linux完全开源,你不喜欢,可以自己改,只要你技术够。另外,Windows虽然使用的人多,但使用场合单一,专注与桌面。而Linux在各个方面都有发展,尤其在云计算,服务器软件,嵌入式领域,企业级应用上有广大前景,而且兼容性一流,由于支持POSIX可以无缝的运行在UNIX系统之上,不管是苹果的Mac还是IBM的AS400系列,都是完全支持的。另外,Linux的开发环境支持也绝对是一流的,不管是C/C++,Java,Bash,Python,PHP,Javascript,。。。。。。就连C#也支持。而微软除Visual Stdio套件以外,都不怎么友好,不是吗?

如果你看完APUE的感触有很多,希望验证你的某些想法或经验,推荐UNIX程序设计艺术,世界顶级黑客将同你分享他的看法。

现在是时候做分流了。 大体上我分为四个方向:网络,图形,嵌入式,设备驱动。

如果选择网络,再细分,我对其他的不是他熟悉,只说服务器软件编写及高性能的并发程序编写吧。相对来说这是网络编程中技术含量最高的,也是底层的。需要很多的经验,看很多的书,做很多的项目。

我的看法是以下面的顺序来看书:

APUE再深读 – 尤其是进程,线程,IPC,套接字

多核程序设计 - Pthread一定得吃透了,你很NB

UNIX网络编程 – 卷一,卷二

TCP/IP网络详解 – 卷一 再看上面两本书时就该看了

5TCP/IP 网络详解 – 卷二 我觉得看到卷二就差不多了,当然卷三看了更好,努力,争取看了

6Lig>

一、数据收集

数据收集是数据分析的最基本 *** 作,你要分析一个东西,首先就得把这个东西收集起来才行。由于现在数据采集的需求,一般有Flume、Logstash、Kibana等工具,它们都能通过简单的配置完成复杂的数据收集和数据聚合。

二、数据预处理

收集好以后,我们需要对数据去做一些预处理。千万不能一上来就用它做一些算法和模型,这样的出来的结果是不具备参考性的。数据预处理的原因就是因为很多数据有问题,比如说他遇到一个异常值(大家都是正的,突然蹦出个负值),或者说缺失值,我们都需要对这些数据进行预处理。

三、数据存储

数据预处理之后,下一个问题就是:数据该如何进行存储通常大家最为熟知是MySQL、Oracle等传统的关系型数据库,它们的优点是能够快速存储结构化的数据,并支持随机访问。但大数据的数据结构通常是半结构化(如日志数据)、甚至是非结构化的(如视频、音频数据),为了解决海量半结构化和非结构化数据的存储,衍生了HadoopHDFS、KFS、GFS等分布式文件系统,它们都能够支持结构化、半结构和非结构化数据的存储,并可以通过增加机器进行横向扩展。

四、数据分析

做数据分析有一个非常基础但又极其重要的思路,那就是对比,基本上 90% 以上的分析都离不开对比。主要有:纵比、横比、与经验值对比、与业务目标对比等。

五、数据运用

其实也就是把数据结果通过不同的表和图形,可视化展现出来。使人的感官更加的强烈。常见的数据可视化工具可以是excel,也可以用power BI系统。

六、总结分析

根据数据分析的结果和报告,提出切实可行的方案,帮助企业决策等。

关于数据分析的具体流程是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

以上就是关于入门大数据需要学习什么内容全部的内容,包括:入门大数据需要学习什么内容、关于linux学习路线的问题 请教前辈、数据分析的具体流程是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/10199437.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存