逐渐变慢
突然变慢
不定时变慢
第一种情况 逐渐变慢 要建立一个长期的监控机制 比如 写个shell脚本每天的忙时(通常 ~ etc )定时收集os neork db的信息 每个星期出report对收集到的信息进行分析 这些数据的积累 可以决定后期的优化决策 并且可以是DBA说服manager采用自己决策的重要数据 DBA的价值 就在每个星期的report中体现
第二种情况 突然变慢 也是最容易解决的 先从业务的角度看是DB的使用跟以前有何不同 然后做进一步判断 硬件/网络故障通常也会引起DB性能的突然下降
第一步: 察看DB/OS/NEORK的系统log 排除硬件/网络问题
第二步 察看数据库的等待事件 根据等待事件来判断可能出问题的环节 如果 没有等待事件 可以排除数据库的问题 如果有等待时间 根据不同的等待事件 来找引起这些事件的根源
比如latch free等跟SQL parse有关系的等待事件 OS的表现是CPU 的占用率高
db file scattered read等跟SQL disk read有关系的等待时间 OS的表现是iostat可以看到磁盘读写量增加
第三步: 察看os的信息 CPU/IO/MEMORY等
a Cpu 的占用率
CPU占用率与数据库性能不成反比 CPU占用率高 不能说明数据库性能慢 通常情况 一个优化很好 而且业务量确实很大的数据库 CPU的占用率都会高 而且会平均分布在每个进程上 反过来 CPU的占用率都会高也不代表数据库性能就好 要结合数据库的等待事件来判断CPU占用率高是否合理
如果某个进程的cpu占用高 肯定是这个进程有问题 如果 不是oracle的进程 可以让application察看是否程序有死循环等漏洞 如果 是oracle的进程 可以根据pid查找oracle数据字典看看这个进程的发起程序 正在执行的sql语句 以及等待事件 然后 不同情况使用不同的方法来解决
b IO
排除硬件的IO问题 数据库突然变慢 一般来说 都是一个或几个SQL语句引起的
如果IO很频繁 可以通过优化disk reads高的TOP SQL来解决 当然这也是解决IO问题的最笨也是最有效的办法
OS以及存储的配置也是影响IO的一个重要的原因
比如 最常见的HP unix下异步IO的问题 如果DBA GROUP没有MLOCK的权限 ORACLE是不使用AIO的 偏偏OS与DB的两方的admin如果配合不够好地话 这个配置就很容易给漏掉了
c Memory
第二种情况与memory的关系比较小 只要SGA区配置合理没有变化 一般来说 只要不是Application Memory leak 不会引起突然变慢的现象
第三种情况 不定时变慢 是最难解决的 现场出现的问题原因也是五花八门千奇百怪 最重要的是 出现慢的现象时 以最快的速度抓取到最多的信息以供分析 先写好抓取数据的shell 脚本 并在现象发生时及时按下回车键
一个例子
数据库突然变慢
背景: 一个新应用上线后 数据库突然变慢
第一步 调查新应用
据开发人员讲新应用访问的都是新建立的表 表的数据量很小 没有复杂的SQL查询
查询 v$sqlarea 分别按照disk_reads / buffer_gets / executions 排序 TOP SQL 中没有新应用的SQL 排除新应用数据库访问照成的性能问题
第二步 察看数据库log/ OS log
数据库log中可以看到大量的ORA 错误 以及大量的dump文件 分析dump文件(时间久了 没有dump文件可参考 具体细节没法描述下来 ) 发现是新应用通过dblink访问remote DB时生成的dump文件 应用开发人说没法修改 Oracle也没有相应的patch解决
OS log中没有错误信息
第三步 察看statspack report
从wait events中看到 Top event是 buffer busy waits db file parallel write 等于IO相关的等待事件
从buffer busy waits 的统计信息来看 是等待data block
还有些physical reads等信息与从前比没有太多的异常
Tablespace 的IO reads/writes也没有异常 但是wait明显增加
初步确定是IO问题
第四步 察看OS的信息
top 命令(输出为实验室数据 仅作格式参考)
load averages: : :
processes: sleeping zombie stopped on cpu
CPU states: % idle % user % kernel % iowait % swap
Memory: M real M free M swap in use M swap free
PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU MAND
a K K cpu/ : % top
mpgj M K sleep : % view_server
当时现场数据显示 iowait 值与以前相比大很多 没有异常进程
sar –d (输出为实验室数据 仅作格式参考)
SunOS sc Generic_ sun u / /
: : device %busy avque r+w/s blks/s avwait avserv
sd
sd a
sd b
sd c
sd g
当时现场数据显示 放数据文件的设备 avwait avque blks/s值偏大
第五步 察看数据库的等待事件
一个大业务量的数据库如果性能不好的话 一般来说都会有大量的等待事件 上百个等待事件很常见 我通常会按照EVENT进行group
Select count(*) event from v$session_wait where event not in ( *** on timer pmon timer rdbms ipc message SQL*Net message from client ) group by event order by desc
输出结果显示最多的等待事件是buffer busy waits
进一步分析 找出等待的原因
Select count(*) p p p from v$session_wait where event = buffer busy waits group by p p p
在buffer busy waits等待事件中
P = file#
P = block#
P = id ( 此id对应为等待的原因)
按照p p p group是为了明确buffer busy waits的等待集中在哪些对象上
Metalink对buffer busy waits等待事件的描述有如下一段话
If P shows that the buffer busy wait is waiting for a block read to plete then the blocking session is likely to be waiting on an IO wait (eg: db file sequential read or db file scattered read for the same file# and block#
输出结果显示 等待分布在多个不同的对象上 等待原因为 waiting for a block read to plete 进一步分析为IO的问题
如果 buffer busy waits等待集中在某个对象上 说明有hot block 通过重新rebuild这个对象增加freelist来解决 RAC环境增加freelist group
通过以下SQL可以找到具体的object
Select owner segment_name segment_type from dba_extents where file_id=P and P beeen block_id and block_id+blocks
P P 是上面v$session_wait查出的具体的值
第六步 明确原因 找出解决步骤
分析
磁盘的IO流量增加
磁盘的IO等待增加
DB的IO流量没有增加
DB的IO等待增加
由 可以推出 有数据库以外的IO访问磁盘
察看磁盘配置 该VG只存放了数据库数据文件和数据库系统文件 排除数据文件 产生IO的是数据库系统文件
数据库系统文件一般来说不会产生IO 有IO读写的地方只有log和dump文件
结论 ora 产生的大量core dump文件堵塞IO
解决办法
消除ora (应用不改的情况下 无法解决)
把dump目录指向别的VG
让oracle尽量少的去写core dump文件
background_core_dump = partial
lishixinzhi/Article/program/Oracle/201311/18969MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 8.0 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。
如何跳过校验MySQL 5.7 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:
1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2. 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。
临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。
数据库查询速度慢的原因有很多,常见的有以下几种:1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)
2、I/O吞吐量小,形成了瓶颈效应。
3、没有创建计算列导致查询不优化。
4、内存不足
5、网络速度慢
6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)
7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)
8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
9、返回了不必要的行和列
10、查询语句不好,没有优化
●可以通过以下方法来优化查询 :
1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要。
2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)
3、升级硬件
4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段。
5、提高网速。
6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。
配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server?
2000时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的1.5倍。如果另外安装了全文检索功能,并打算运行Microsoft搜索服务以便执行
全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的3倍。将SQL Server max server
memory服务器配置选项配置为物理内存的1.5倍(虚拟内存大小设置的一半)。
7、增加服务器CPU个数但是必须
明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询
的排序、连接、扫描和GROUP BY字句同时执行,SQL
SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新 *** 作UPDATE,INSERT,
DELETE还不能并行处理。
8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like ''a%'' 使用索引 like
''%a'' 不使用索引用 like ''%a%''
查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。
9、DB Server 和APPLication Server 分离;OLTP和OLAP分离
10、分布式分区视图可用于实现数据库服务器联合体。
联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件''分区视图'')
a、在实现分区视图之前,必须先水平分区表
b、
在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上
运行。系统 *** 作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。
11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。
在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:
1、 查询语句的词法、语法检查
2、 将语句提交给DBMS的查询优化器
3、 优化器做代数优化和存取路径的优化
4、 由预编译模块生成查询规划
5、 然后在合适的时间提交给系统处理执行
6、 最后将执行结果返回给用户。
其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。
12、 Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物.
没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) commit trans 或者将动态SQL
写成函数或者存储过程。
13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。
14、SQL的注释申明对执行没有任何影响
15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。
游标可以按照它所支持的提取选项进行分类:只进必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取 *** 作,也是默认方式。可滚动性可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。
有四个并发选项 READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。
OPTIMISTIC WITH
valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新
某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获
取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。
选择这个并发选项OPTIMISTIC WITH ROW
VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有
所更改。在SQL Server中,这个性能由timestamp数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。
每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有 timestamp 列的行时,SQL Server
先在时间戳列中存储当前的 @@DBTS 值,然后增加 @@DBTS 的值。如果某 个表具有 timestamp
列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需
比较 timestamp 列即可。如果应用程序对没有 timestamp
列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS
这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其
上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下
一行时,锁就被丢弃。
因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更
新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 SELECT
语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器
为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚 *** 作之后。如果提交时关闭游标的选项为关,则
COMMIT语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标
SELECT 语句中的锁提示。锁提示 只读乐观数值
*指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。
16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在用索引优化器优化索引
17、注意UNion和UNion all 的区别。UNION all好
18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的
19、查询时不要返回不需要的行、列
20、 用sp_configure ''query governor cost limit''或者SET
QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。
SET LOCKTIME设置锁的时间
21、用select top 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制 *** 作的行
22、 在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>",
"!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE
''%500''",因为他们不走索引全是表扫描。也不要在WHere字句中的列名加函数,如Convert,substring等,如果必须用函数的时
候,创建计算列再创建索引来替代.还可以变通写法:WHERE SUBSTRING(firstname,1,1) = ''m''改为WHERE
firstname like ''m%''(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT
IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN
来替代,特别是左连接,而Exists比IN更快,最慢的是NOT *** 作.如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同
的是IS NULL,“NOT", "NOT EXISTS", "NOT IN"能优化她,而”<>”等还是不能优化,用不到索引。
23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。
24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: SELECT * FROM PersonMember (INDEX = IX_Title) WHERE processid IN (‘男’,‘女’)
25、将需要查询的结果预先计算好放在表中,查询的时候再SELECT。这在SQL7.0以前是最重要的手段。例如医院的住院费计算。
26、MIN() 和 MAX()能使用到合适的索引。
27、 数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers,
Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure.这样不仅维护工作小,编写程
序质量高,并且执行的速度快。
28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌INsert来插入(不知JAVA
是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动作:
方法:Create procedure p_insert as insert into table(Fimage) values
(@image), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)