内存数据库,其实就是将数据放在内存中直接 *** 作的数据库。相对于磁盘,内存的数据读写速度要高出几个数量级,将数据保存在内存中相比从磁盘上访问能够极大地提高应用的性能。内存数据库抛弃了磁盘数据管理的传统方式,基于全部数据都在内存中重新设计了体系结构,并且在数据缓存、快速算法、并行 *** 作方面也进行了相应的改进,所以数据处理速度比传统数据库的数据处理速度要快很多。
但是安全性的问题可以说是内存数据库最大的硬伤。因为内存本身有掉电丢失的天然缺陷,因此我们在使用内存数据库的时候,通常需要,提前对内存上的数据采取一些保护机制,比如备份,记录日志,热备或集群,与磁盘数据库同步等方式。对于一些重要性不高但是又想要快速响应用户请求的部分数据可以考虑内存数据库来存储,同时可以定期把数据固化到磁盘。
2.使用RDD
在大数据云计算相关领域的一些应用中,Spark可以用来加快数据处理速度。Spark的核心是RDD,RDD最早来源与Berkeley实验室的一篇论文《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》。现有的数据流系统对两种应用的处理并不高效:一是迭代式算法,这在图应用和机器学习领域很常见;二是交互式数据挖掘工具。这两种情况下,将数据保存在内存中能够极大地提高性能。% n( i. u5 O! m
3.增加缓存
很多web应用是有大量的静态内容,这些静态内容主要都是一些小文件,并且会被频繁的读,采用Apache以及nginx作为web服务器。在web访问量不大的时候,这两个http服务器可以说是非常的迅速和高效,如果负载量很大的时候,我们可以采用在前端搭建cache服务器,将服务器中的静态资源文件缓存到 *** 作系统内存中直接进行读 *** 作,因为直接从内存读取数据的速度要远大于从硬盘读取。这个其实也是增加内存的成本来降低访问磁盘带来的时间消耗。
4.使用SSD
除了对内存方面的优化,还可以对磁盘这边进行优化。跟传统机械硬盘相比,固态硬盘具有快速读写、质量轻、能耗低以及体积小等特点。但是ssd的价格相比传统机械硬盘要贵,有条件的可以使用ssd来代替机械硬盘。/
5.优化数据库)
大部分的服务器请求最终都是要落到数据库中,随着数据量的增加,数据库的访问速度也会越来越慢。想要提升请求处理速度,必须要对原来的单表进行动刀了。目前主流的Linux服务器使用的数据库要属mysql了,如果我们使用mysql存储的数据单个表的记录达到千万级别的话,查询速度会很慢的。根据业务上合适的规则对数据库进行分区分表,可以有效提高数据库的访问速度,提升服务器的整体性能。另外对于业务上查询请求,在建表的时候可以根据相关需求设置索引等,以提高查询速度。
labview连接mysql数据库时间长会卡死是由于查询数据量太大导致。根据相关信息显示,labview连接mysql数据库是由于数据库数据过大容易卡死,可以精简数据库数据或者使用其他方式链接。MySQL是一个关系型数据库管理系统,由瑞典MySQLAB公司开发,属于Oracle旗下产品。MySQL是最流行的关系型数据库管理系统之一,在WEB应用方面,MySQL是最好的RDBMS(RelationalDatabaseManagementSystem,关系数据库管理系统)应用软件之一。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)