以往无论是运营商还是银行核心系统,大架构都垄断在西方的 IOE(IBM、Oracle、EMC)这三座大山里。直到2008年阿里提出去“IOE”运动,开始助推信息化软件国产化浪潮。
天云数据就是其中最早一批入场者。2010年为了建立中国完整的云计算产业链,中国宽带之父田溯宁投资建设云基地,天云数据便由此孵化,初备雏形。
2015年,雷涛带领创始团队们正式成立天云数据,率先切入金融领域。天云提供了国内领先的国产HTAP数据库Hubble,完成了“去IOE”中最困难的部分,替代金融A类核心系统惯用的西方IOE架构,在银行的联机事务中解决A类核心系统减负问题。此外,为了降低AI使用门槛,天云数据还推出AI PaaS平台MaximAI,逐步将数据价值逐渐扩展到能源、医药、军事等其它行业。
目前天云数据有70多家行业内大企业客户,单笔合同200-500万,纯软件年营收过亿。
融资方面,天云数据2018年曾获得曦域资本、华映资本B轮1亿人民币投资。
作为行业老兵,雷涛在北美跨国公司有20多年的技术管理经验, 2005年便入席SNIA存储工业协会中国区技术委员会联合主席,CCF中国计算机学会大数据专委会委员。
2011年在云基地时期,雷涛和创始团队通过BDP大数据平台负责了众多运营商业务,如联通的数据魔方、移动总部、南方基地等,2015年天云数据正式独立后,雷涛为了避免同业竞争,选择先聚焦在金融领域。
“天云数据的目标是替代 Oracle 和 SAS ”。云基地时期的积累让天云数据一开始就有高起点,首单就接下了光大银行的核心系统——OLTP线交易系统。比如银行能在全国所有营业厅实时实现OOTD交易,实时查询存钱取钱数额,整个环节涉及的技术都是天云数据早期对Oracle的一些替代。
但之后在多次的项目 *** 作过程中雷涛发现,在几百万条交易规格的强一致性下,数据的移动性、计算框架的变化、联机事务同时要做大规模并行计算,这对计算场景的通用性、即时性和全量数据要求极高,传统 Oracle架构根本无法适应。
“在Oracle架构之上,还需要升级满足新需求”。
于是天云数据自主研发HTAP国产分布式数据库Hubble。与传统 IT 架构处理失误需要联机分析和分开处理不同,HTAP 数据库能够在一份数据上同时支撑业务系统运行并做 OLAP 场景,避免在线与离线数据库之间大量的数据交互,为系统减负。
HTAP国产分布式数据库Hubble替代了Oracle一体机,核心表2000余张80T左右、400亿条交易数据、提供56只服务应用交易、满足500个用户并发、500ms交易服务响应、每天在线交易量超200万、占整个银行核心交易量的10%,让银行面向柜面系统可提供7*8小时A类实时核心交易,面向手机网银系统可提供7*24小时A类实时核心交易。
从集中式Oracle切换到分布式HTAP,也解决了数据库扩展性的问题。比如天云数据让光大银行解决了 历史 数据查询问题,以往 历史 查询只能查到2年前,但在分布式技术上线后,可以查询15年前所有交易数据,同时让银行柜面系统以及手机APP可以无数人同时查询。
而在BI逐步转向AI的过程中,复杂的商业流程经算法重构。过去要把数据拿到SAS平台先分析,一层一层地把数据提出来搭建。但现在通过分布式技术,流程趋于扁平化,可以实现毫秒级的服务响应。
天云数据一开始就撬动的是行业头部资源。目前天云数据有光大银行、兴业银行、中信银行、中泰证券、中国石油、国家统计局等70余家行业内大企业客户,分布在金融、能源、医药、政府军事等领域,单笔合同级别超百万
针对每个垂直行业,天云数据都会成立一个子公司来专注赛道。目前天云数据有160人,技术人员超六成。
在雷涛看来,如果一年600个项目,全是5万、15万等碎片化的订单,公司总是重复满足初级客户的简单需求,技术很难沉淀和深入。“在当下成长阶段,打造产品需要在用户想要什么和你想做什么中找到平衡”。
对于雷涛而言,专注头部大B发展有两大发展潜力。一方面,大B拥有机器学习的普遍能力和实验室,更容易接受新产品。另一方面,天云数据交付产品和交付服务的同时也在转移大B客户的数据价值。
“AI本身是一个知识生产过程,它能把大型企业规则、流程的经验价值快速地抽样出来进行复制,赋能行业内其它客户甚至类似的其它行业。”
但在头部客户更定制化、个性化的情况下,天云数据是否失去了很强的复制能力?
雷涛解释到,虽然每个企业要求不尽相同,但都在不大的池子里找数据库。企业从海量数据中对数据进行迁徙、清洗、去重,可以去找合适的AI方法让它产生业务的价值,此过程具有通用性。
谈到核心壁垒,雷涛认为天云数据壁垒就是数据的复制价值。
壁垒的构建可分为两个阶段。第一个阶段是前沿 科技 本身的壁垒,比的是效率和产品核心价值,谁能够扎得深和更好的交付,谁就能拔得头筹。而作为国内最早研发大数据和人工智能的团队,天云数据有一定的技术先发优势。
第二个阶段是推理端的服务。数据资源的价值需要通过机器学习进行提炼,形成知识,进而封装成推理服务服务于行业。比如某保险公司20年长周期发生的重疾赔付定价上学习出来的特征和内容能够快速地移植到保险行业,而头部大企业客户给天云数据带来很优质的训练数据库。
未来AI将引爆万亿级大市场,但目前渗透率不到1%,这给各企业留有众多机会和想象空间。但无论哪种圈地方式,最终比的是速度、服务的稳定性以及产品化的能力。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)