近年来,国内外在数据库智能化(AI for DB)方向有哪些进展?

近年来,国内外在数据库智能化(AI for DB)方向有哪些进展?,第1张

智能运维,负载均衡߅冷热分离,数据融合,智能数据库等等,主要面向机器学习与数据挖掘方向。

AntDB数据库,一款在通信行业得到充分使用的业内领先的国产数据库,帮助客户进行OLTP 与OLAP一站式处理的数据库产品,具备丰富配套工具和完整服务体系。AntDB 先进的云原生分布式架构设计,支持峰值每秒百万笔的电信核心交易,数据处理能力、系统吞吐量、交易安全性在行业内领先。并且支持内存存储引擎智能切换,在满足高性能并发要求的同时,在平高峰期智能切换内存-磁盘引擎,实现降本增效。

目前AntDB已在电信核心业务系统持续运行近十年,应用于通信、金融、政企、物联网等行业的联机交易、CRM、客户服务等场景,得到客户的高度认可。

常见的数据库系统目前主流的有微软的sql

server、甲骨文公司的oracle和mysql数据库,这些是网络型数据库,当然还有一些为桌面型的数据库系统如access,visual

foxpro等。

目前国内外常用的金融数据库的主要优点是:商品化的数据库管理系统以关系型数据库为主导产品,技术比较成熟。

金融数据除了具有数据的一般特性外,还具有自身的一些特性:

(1)广泛性。由于金融机构在国民经济中处于特殊地位,它与全社会各个经济细胞和微观主体都有着密切的联系,因此必须面向全社会广泛获取数据,这就使得金融数据的涵盖范围非常广泛。

(2)综合性。金融数据作为国民经济的综合部门,直接面向国民经济各行各业,为全社会的各群体提供金融服务。通过这些服务尤其是资金服务,可以汇集起反映国民经济运行的综合数据,因此金融数据具有很强的综合性。

金融数据库分类:

按照金融业务活动划分,可以将金融数据分为银行业务数据、证券业务数据、保险业务数据以及信托、咨询等方面的数据,其中银行业务数据又包括信贷、会计、储蓄、结算、利率等方面的数据。

证券业务数据又包括行情、委托、成交、资金市场供求以及上市公司经营状态等方面的数据;保险业务数据又包括投保、理赔、投资等方面的数据。这些数据都从某一侧面反映了金融活动的特征、规律和运行状况。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6760298.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-27
下一篇 2023-03-27

发表评论

登录后才能评论

评论列表(0条)

保存