厉害!一文了解消息中间件-RabbitMQ

厉害!一文了解消息中间件-RabbitMQ,第1张

RabbitMQ是2007年发布,是一个在AMQP(高级消息队列协议)基础上完成的,简称MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法,由Erlang(专门针对于大数据高并发的语言)语言开发,可复用的企业消息系统,是当前最主流的消息中间件之一,具有可靠性、灵活的路由、消息集群简单、队列高可用、多种协议的支持、管理界面、跟踪机制以及插件机制。

1.消息 就是数据,增删改查的数据。例如在员工管理系统中增删改查的数据

2.队列 指的是一端进数据一端出数据,例如C#中(Queue数据结构)

1.消息队列指:一端进消息,一端出消息

2.RabbitMQ就是实现了消息队列概念的一个组件,以面向对象的思想去理解,消息队列就是类,而RabbitMQ就是实例,当然不仅仅只有RabbitMQ,例如ActiveMQ,RocketMQ,Kafka,包括Redis也可以实现消息队列。

1.在常见的单体架构中,主要流程是用户UI *** 作发起Http请求>服务器处理>然后由服务器直接和数据库交互,最后同步反馈用户结果

2.在微服务架构中,UI与微服务通信,主要是通过Http或者gRPC同步通信

问题分析

在上述2种情况下,我们发现在UI请求时都是同步 *** 作 ,第2种架构虽然将整体服务按业务拆分成不同的微服务并且对应各自的数据库,但是在用户与微服务通信时,存在的问题依然没有解决,例如数据库的承载能力只能处理10w个请求,如果遇到高并发情况下,UI发起50w请求,那数据库是远远承载不了的,从而导致如下问题。

1.高并发请求导致系统性能下降响应慢,同时数据库承载风险加大

2.扩展性不强UI *** 作的交互对业务的依赖较大,导致用户体验下降

3.瞬时流量涌入巨大的话,服务器可能直接挂了

解决方案

RabbitMQ的优势

RabbitMQ的不足

1.ConnectionFactory 为Connection的制造工厂。

2.Connection是RabbitMQ的socket链接,它封装了socket协议相关部分逻辑。

3.Channel是我们与RabbitMQ打交道的最重要的一个接口,我们大部分的业务 *** 作是在Channel这个接口中完成的,包括定义Queue、定义Exchange、绑定Queue与Exchange、发布消息等。

4.Exchange(交换机) 我们通常认为生产者将消息投递到Queue中,实际上实际的情况是,生产者将消息发送到Exchange,由Exchange将消息路由到一个或多个Queue中(或者丢弃),而在RabbitMQ中的Exchange一共有4种策略,分别为:fanout(扇形)、direct(直连)、topic(主题)、headers(头部)

1.下载RabbitMQ

2.运行环境erlang

3.安装完成之后,加载RabbitMQ管理插件

4.安装成功访问RabbitMQ管理后台http://localhost:15672

1.分别创建考勤服务,请假服务,计算薪酬服务,邮件服务,短信服务消费者角色

2.创建员工管理网站用于模拟前端调用,主要充当生产者角色

3.在员工管理网站和每一个模拟微服务中通过nuget引入RabbitMQ.Client

4.在员工管理网站中创建模拟添加考勤的控制器并加入生产者代码

5.在考勤微服务中创建接口,并在接口中加入消费者代码

fanout类型的Exchange路由规则非常简单,工作方式类似于多播一对多,它会把所有发送到该Exchange的消息路由到所有与它绑定的Queue中。

业务实例

当我们有员工需要请假,在员工管理系统提交请假,但是由于公司规定普通员工请假,需要发送短信到他的主管领导,针对此业务场景我们需要调用请假服务的同时去发送短信,这时需要两个消费者(请假服务,短信服务)来消费同一条消息,其实本质就是往RabbitMQ写入一个能被多个消费者接收的消息,所以可以使用 扇形交换机,一个生产者,多个消费者.

生产者模拟使用调用控制器来实现

消费者实现IHostedService 接口创建一个监听主机

直接交换器,工作方式类似于单播一对一,Exchange会将消息发送完全匹配ROUTING_KEY的Queue,缺陷是无法实现多生产者对一个消费者

当我们员工管理系统需要计算薪资并将结果以发送短信的方式告诉员工,这个时候我们就不太适合用“扇形交换机”了,因为换做是你,你也不想你的工资全公司都知道吧?这个时候就需要定制了一对一的场景了,那就在生产消息时使用直连交换机根据routingKey发送指定的消费者.

生产者模拟使用调用控制器来实现

消费者实现IHostedService 接口创建一个监听主机

Exchange绑定队列需要制定KeyKey 可以有自己的规则;Key可以有占位符; 或者# , 匹配一个单词、#匹配多个单词,在Direct基础上加上模糊匹配;多生产者一个消费者,可以多对对,也可以多对1, 真实项目当中,使用主题交换机。可以满足所有场景

1.生产者定义Exchange,然后不同的routingKey绑定

3.消费者routingKey的模糊匹配,生产者发送消息时routingKey定义以sms.开头, * 号只能匹配的routingKey为一级,例如(sms.A)或(sms.B)的发送的消息,# 能够匹配的routingKey为一级及多级以上 ,例如 (sms.A)或者(sms.A.QWE.IOP)

在月底的时候我们需要把员工存在异常考勤信息,薪资结算信息,请假信息分别以邮件的形式发送给我们的员工查阅,我们知道这是一个典型的多个生产者,一个消费者场景,异常考勤信息,薪资结算信息,请假信息分别需要生产消息发送到RabbitMQ,然后供我们员工消费

分别模拟3个生产者:异常考勤信息,薪资结算信息,请假信息

headers类型的Exchange不依赖于routing key与binding key的匹配规则来路由消息,而是根据发送的消息内容中的headers属性进行匹配。

在绑定Queue与Exchange时指定一组键值对以及x-match参数,x-match参数是字符串类型,可以设置为any或者all。如果设置为any,意思就是只要匹配到了headers表中的任何一对键值即可,all则代表需要全部匹配。

1.不需要依赖Key

2.更多的时候,像这种Key Value 的键值,可能会存储在数据库中,那么我们就可以定义一个动态规则来拼装这个Key value ,从而达到消息灵活转发到不同的队列中去

我们根据上面的业务和代码简单实现了由生产者到消费者的一个业务流程,我们可以总结出知道,整个消息的收发过程包含有三个角色,生产者(员工管理网站)、RabbitMQ(Broker)、消费者(微服务),在理想状态下,按照这样实现,整个流程以及系统的稳定性,可能不会发生太大的问题,但是真正在实际应用中我们要去思考可能存在的问题,主要从三个大的方面去分析,然后发散。

1.生产端

2.存储端

3.消费端

我们在给RabbitMQ发送消息时,如何去保证消息一定到达呢,我们可以使用RabbitMQ提供了2种生产端的消息确认机制

我们生产端给RabbitMQ发送消息成功后,如果RabbitMQ宕机了,会导致RabbitMQ中消息丢失,如何解决消息丢失问题,针对RabbitMQ消息丢失,我们可以在生产者中使用

1.持久化消息

2.集群

当生产者写入消息到RabbitMQ后,消费服务接收消息期间,服务器宕机,导致消息丢失了,这个时候我们就应该使用RabbitMQ的消费端消息确认机制

1.自动确认

2.手动确认

消费者收到消息。消费者发送确认消息给rabbitmq期间。执行业务逻辑失败了,但是消息已经确认被消费了,我们应该在我们的消费者接收消息回调执行业务逻辑后面,执行使用手动确认消息机制,保证消息不被丢失

原文链接:https://www.cnblogs.com/yuxl01/p/15978229.html

我们的服务器从单机发展到拥有多台机器的分布式系统,各个系统之前需要借助于网络进行通信,原有单机中相对可靠的方法调用以及进程间通信方式已经没有办法使用,同时网络环境也是不稳定的,造成了我们多个机器之间的数据同步问题,这就是典型的分布式事务问题。

在分布式事务中事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。分布式事务就是要保证不同节点之间的数据一致性。

1、2PC(二阶段提交)方案 - 强一致性

2、3PC(三阶段提交)方案

3、TCC (Try-Confirm-Cancel)事务 - 最终一致性

4、Saga事务 - 最终一致性

5、本地消息表 - 最终一致性

6、MQ事务 - 最终一致性

消息的生产方,除了维护自己的业务逻辑之外,同时需要维护一个消息表。这个消息表里面记录的就是需要同步到别的服务的信息,当然这个消息表,每个消息都有一个状态值,来标识这个消息有没有被成功处理。

发送放的业务逻辑以及消息表中数据的插入将在一个事务中完成,这样避免了业务处理成功 + 事务消息发送失败,或业务处理失败 + 事务消息发送成功,这个问题。

举个栗子:

我们假定目前有两个服务,订单服务,购物车服务,用户在购物车中对几个商品进行合并下单,之后需要情况购物车中刚刚已经下单的商品信息。

1、消息的生产方也就是订单服务,完成了自己的逻辑(对商品进行下单 *** 作)然后把这个消息通过 mq 发送到需要进行数据同步的其他服务中,也就是我们栗子中的购物车服务。

2、其他服务(购物车服务)会监听这个队列;

1、如果收到这个消息,并且数据同步执行成功了,当然这也是一个本地事务,就通过 mq 回复消息的生产方(订单服务)消息已经处理了,然后生产方就能标识本次事务已经结束。如果是一个业务上的错误,就回复消息的生产方,需要进行数据回滚了。

2、很久没收到这个消息,这种情况是不会发生的,消息的发送方会有一个定时的任务,会定时重试发送消息表中还没有处理的消息;

3、消息的生产方(订单服务)如果收到消息回执;

1、成功的话就修改本次消息已经处理完,也就是本次分布式事务的同步已经完成;

2、如果消息的结果是执行失败,同时在本地回滚本次事务,标识消息已经处理完成;

3、如果消息丢失,也就是回执消息没有收到,这种情况也不太会发生,消息的发送方(订单服务)会有一个定时的任务,定时重试发送消息表中还没有处理的消息,下游的服务需要做幂等,可能会收到多次重复的消息,如果一个回复消息生产方中的某个回执信息丢失了,后面持续收到生产方的 mq 消息,然后再次回复消息的生产方回执信息,这样总能保证发送者能成功收到回执,消息的生产方在接收回执消息的时候也要做到幂等性。

这里有两个很重要的 *** 作:

1、服务器处理消息需要是幂等的,消息的生产方和接收方都需要做到幂等性;

2、发送放需要添加一个定时器来遍历重推未处理的消息,避免消息丢失,造成的事务执行断裂。

该方案的优缺点

优点:

1、在设计层面上实现了消息数据的可靠性,不依赖消息中间件,弱化了对 mq 特性的依赖。

2、简单,易于实现。

缺点:

主要是需要和业务数据绑定到一起,耦合性比较高,使用相同的数据库,会占用业务数据库的一些资源。

下面分析下几种消息队列对事务的支持

RocketMQ 中的事务,它解决的问题是,确保执行本地事务和发消息这两个 *** 作,要么都成功,要么都失败。并且,RocketMQ 增加了一个事务反查的机制,来尽量提高事务执行的成功率和数据一致性。

主要是两个方面,正常的事务提交和事务消息补偿

正常的事务提交

1、发送消息(half消息),这个 half 消息和普通消息的区别,在事务提交 之前,对于消费者来说,这个消息是不可见的。

2、MQ SERVER写入信息,并且返回响应的结果;

3、根据MQ SERVER响应的结果,决定是否执行本地事务,如果MQ SERVER写入信息成功执行本地事务,否则不执行;

如果MQ SERVER没有收到 Commit 或者 Rollback 的消息,这种情况就需要进行补偿流程了

补偿流程

1、MQ SERVER如果没有收到来自消息发送方的 Commit 或者 Rollback 消息,就会向消息发送端也就是我们的服务器发起一次查询,查询当前消息的状态;

2、消息发送方收到对应的查询请求,查询事务的状态,然后把状态重新推送给MQ SERVER,MQ SERVER就能之后后续的流程了。

相比于本地消息表来处理分布式事务,MQ 事务是把原本应该在本地消息表中处理的逻辑放到了 MQ 中来完成。

Kafka 中的事务解决问题,确保在一个事务中发送的多条信息,要么都成功,要么都失败。也就是保证对多个分区写入 *** 作的原子性。

通过配合 Kafka 的幂等机制来实现 Kafka 的 Exactly Once,满足了读取-处理-写入这种模式的应用程序。当然 Kafka 中的事务主要也是来处理这种模式的。

什么是读取-处理-写入模式呢?

栗如:在流计算中,用 Kafka 作为数据源,并且将计算结果保存到 Kafka 这种场景下,数据从 Kafka 的某个主题中消费,在计算集群中计算,再把计算结果保存在 Kafka 的其他主题中。这个过程中,要保证每条消息只被处理一次,这样才能保证最终结果的成功。Kafka 事务的原子性就保证了,读取和写入的原子性,两者要不一起成功,要不就一起失败回滚。

这里来分析下 Kafka 的事务是如何实现的

它的实现原理和 RocketMQ 的事务是差不多的,都是基于两阶段提交来实现的,在实现上可能更麻烦

先来介绍下事务协调者,为了解决分布式事务问题,Kafka 引入了事务协调者这个角色,负责在服务端协调整个事务。这个协调者并不是一个独立的进程,而是 Broker 进程的一部分,协调者和分区一样通过选举来保证自身的可用性。

Kafka 集群中也有一个特殊的用于记录事务日志的主题,里面记录的都是事务的日志。同时会有多个协调者的存在,每个协调者负责管理和使用事务日志中的几个分区。这样能够并行的执行事务,提高性能。

下面看下具体的流程

事务的提交

1、协调者设置事务的状态为PrepareCommit,写入到事务日志中;

2、协调者在每个分区中写入事务结束的标识,然后客户端就能把之前过滤的未提交的事务消息放行给消费端进行消费了;

事务的回滚

1、协调者设置事务的状态为PrepareAbort,写入到事务日志中;

2、协调者在每个分区中写入事务回滚的标识,然后之前未提交的事务消息就能被丢弃了;

这里引用一下【消息队列高手课中的图片】

RabbitMQ 中事务解决的问题是确保生产者的消息到达MQ SERVER,这和其他 MQ 事务还是有点差别的,这里也不展开讨论了。

先来分析下一条消息在 MQ 中流转所经历的阶段。

生产阶段 :生产者产生消息,通过网络发送到 Broker 端。

存储阶段 :Broker 拿到消息,需要进行落盘,如果是集群版的 MQ 还需要同步数据到其他节点。

消费阶段 :消费者在 Broker 端拉数据,通过网络传输到达消费者端。

发生网络丢包、网络故障等这些会导致消息的丢失

在生产者发送消息之前,通过channel.txSelect开启一个事务,接着发送消息, 如果消息投递 server 失败,进行事务回滚channel.txRollback,然后重新发送, 如果 server 收到消息,就提交事务channel.txCommit

不过使用事务性能不好,这是同步 *** 作,一条消息发送之后会使发送端阻塞,以等待RabbitMQ Server的回应,之后才能继续发送下一条消息,生产者生产消息的吞吐量和性能都会大大降低。

使用确认机制,生产者将信道设置成 confirm 确认模式,一旦信道进入 confirm 模式,所有在该信道上面发布的消息都会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后,RabbitMQ 就会发送一个确认(Basic.Ack)给生产者(包含消息的唯一 deliveryTag 和 multiple 参数),这就使得生产者知晓消息已经正确到达了目的地了。

multiple 为 true 表示的是批量的消息确认,为 true 的时候,表示小于等于返回的 deliveryTag 的消息 id 都已经确认了,为 false 表示的是消息 id 为返回的 deliveryTag 的消息,已经确认了。

确认机制有三种类型

1、同步确认

2、批量确认

3、异步确认

同步模式的效率很低,因为每一条消息度都需要等待确认好之后,才能处理下一条;

批量确认模式相比同步模式效率是很高,不过有个致命的缺陷,一旦回复确认失败,当前确认批次的消息会全部重新发送,导致消息重复发送;

异步模式就是个很好的选择了,不会有同步模式的阻塞问题,同时效率也很高,是个不错的选择。

Kafaka 中引入了一个 broker。 broker 会对生产者和消费者进行消息的确认,生产者发送消息到 broker,如果没有收到 broker 的确认就可以选择继续发送。

只要 Producer 收到了 Broker 的确认响应,就可以保证消息在生产阶段不会丢失。有些消息队列在长时间没收到发送确认响应后,会自动重试,如果重试再失败,就会以返回值或者异常的方式告知用户。

只要正确处理 Broker 的确认响应,就可以避免消息的丢失。

RocketMQ 提供了3种发送消息方式,分别是:

同步发送:Producer 向 broker 发送消息,阻塞当前线程等待 broker 响应 发送结果。

异步发送:Producer 首先构建一个向 broker 发送消息的任务,把该任务提交给线程池,等执行完该任务时,回调用户自定义的回调函数,执行处理结果。

Oneway发送:Oneway 方式只负责发送请求,不等待应答,Producer 只负责把请求发出去,而不处理响应结果。

在存储阶段正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。

防止在存储阶段消息额丢失,可以做持久化,防止异常情况(重启,关闭,宕机)。。。

RabbitMQ 持久化中有三部分:

消息的持久化,在投递时指定 delivery_mode=2(1是非持久化),消息的持久化,需要配合队列的持久,只设置消息的持久化,重启之后队列消失,继而消息也会丢失。所以如果只设置消息持久化而不设置队列的持久化意义不大。

对于持久化,如果所有的消息都设置持久化,会影响写入的性能,所以可以选择对可靠性要求比较高的消息进行持久化处理。

不过消息持久化并不能百分之百避免消息的丢失

比如数据在落盘的过程中宕机了,消息还没及时同步到内存中,这也是会丢数据的,这种问题可以通过引入镜像队列来解决。

镜像队列的作用:引入镜像队列,可已将队列镜像到集群中的其他 Broker 节点之上,如果集群中的一个节点失效了,队列能够自动切换到镜像中的另一个节点上来保证服务的可用性。(更细节的这里不展开讨论了)

*** 作系统本身有一层缓存,叫做 Page Cache,当往磁盘文件写入的时候,系统会先将数据流写入缓存中。

Kafka 收到消息后也会先存储在也缓存中(Page Cache)中,之后由 *** 作系统根据自己的策略进行刷盘或者通过 fsync 命令强制刷盘。如果系统挂掉,在 PageCache 中的数据就会丢失。也就是对应的 Broker 中的数据就会丢失了。

处理思路

1、控制竞选分区 leader 的 Broker。如果一个 Broker 落后原先的 Leader 太多,那么它一旦成为新的 Leader,必然会造成消息的丢失。

2、控制消息能够被写入到多个副本中才能提交,这样避免上面的问题1。

1、将刷盘方式改成同步刷盘;

2、对于多个节点的 Broker,需要将 Broker 集群配置成:至少将消息发送到 2 个以上的节点,再给客户端回复发送确认响应。这样当某个 Broker 宕机时,其他的 Broker 可以替代宕机的 Broker,也不会发生消息丢失。

消费阶段就很简单了,如果在网络传输中丢失,这个消息之后还会持续的推送给消费者,在消费阶段我们只需要控制在业务逻辑处理完成之后再去进行消费确认就行了。

总结:对于消息的丢失,也可以借助于本地消息表的思路,消息产生的时候进行消息的落盘,长时间未处理的消息,使用定时重推到队列中。

消息在 MQ 中的传递,大致可以归类为下面三种:

1、At most once: 至多一次。消息在传递时,最多会被送达一次。是不安全的,可能会丢数据。

2、At least once: 至少一次。消息在传递时,至少会被送达一次。也就是说,不允许丢消息,但是允许有少量重复消息出现。

3、Exactly once:恰好一次。消息在传递时,只会被送达一次,不允许丢失也不允许重复,这个是最高的等级。

大部分消息队列满足的都是At least once,也就是可以允许重复的消息出现。

我们消费者需要满足幂等性,通常有下面几种处理方案

1、利用数据库的唯一性

根据业务情况,选定业务中能够判定唯一的值作为数据库的唯一键,新建一个流水表,然后执行业务 *** 作和流水表数据的插入放在同一事务中,如果流水表数据已经存在,那么就执行失败,借此保证幂等性。也可先查询流水表的数据,没有数据然后执行业务,插入流水表数据。不过需要注意,数据库读写延迟的情况。

2、数据库的更新增加前置条件

3、给消息带上唯一ID

每条消息加上唯一ID,利用方法1中通过增加流水表,借助数据库的唯一性来处理重复消息的消费。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6767928.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-28
下一篇 2023-03-28

发表评论

登录后才能评论

评论列表(0条)

保存