Hive提供了jdbc驱动,使得我们可以连接Hive并进行一些类关系型数据库的sql语句查询等 *** 作,首先我们需要将这些驱动拷贝到报表工程下面,然后再建立连接,最后通过连接进行数据查询。
拷贝jar包到FR工程
将hadoop里的hadoop-common.jar拷贝至报表工程appname/WEB-INF/lib下;
将hive里的hive-exec.jar、hive-jdbc.jar、hive-metastore.jar、hive-service.jar、libfb303.jar、log4j.jar、slf4j-api.jar、slf4j-log4j12.jar拷贝至报表工程appname/WEB-INF/lib下。
配置数据连接
启动设计器,打开服务器>定义数据连接,新建JDBC连接。
在Hive 0.11.0版本之前,只有HiveServer服务可用,在程序 *** 作Hive之前,必须在Hive安装的服务器上打开HiveServer服务。而HiveServer本身存在很多问题(比如:安全性、并发性等);针对这些问题,Hive0.11.0版本提供了一个全新的服务:HiveServer2,这个很好的解决HiveServer存在的安全性、并发性等问题,所以下面我们分别介绍HiveServer和HiveServer2配置数据连接的方式。
HiveServer
数据库驱动:org.apache.hadoop.hive.jdbc.HiveDriver;
URL:jdbc:hive://localhost:10000/default
注:hive服务默认端口为10000,根据实际情况修改端口;另外目前只支持默认数据库名default,所有的Hive都支持。
测试连接,提示连接成功即可。
4
数据库驱动:org.apache.hive.jdbc.HiveDriver;
URL:jdbc:hive2://localhost:10000/default
注:该连接方式只支持Hive0.11.0及之后版本。
1.查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。
2. 数据存储位置。Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库
则可以将数据保存在本地文件系统中。
3. 数据格式。Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三
个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
4. 数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不
支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ... VALUES 添加数据,使用 UPDATE ...
SET 修改数据。
5. 索引。之前已经说过,Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,
因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。
6. 执行。Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的(类似 select * from tbl
的查询不需要 MapReduce)。而数据库通常有自己的执行引擎。
7. 执行延迟。之前提到,Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外
一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。
8. 可扩展性。由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是
一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的规模在 4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右。
9. 数据规模。由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的
数据;对应的,数据库可以支持的数据规模较小。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)