如何使用mysql完成excel中的数据生成

如何使用mysql完成excel中的数据生成,第1张

如何使用mysql完成excel中的数据生成

Excel是数据分析中最常用的工具,本篇文章通过mysql与excel的功能对比介绍如何使用mysql完成excel中的数据生成,数据清洗,预处理,以及最常见的数据分类,数据筛选,分类汇总,以及数据透视等 *** 作。本篇文章我们介绍第5,6,7部分内容,数据提取,数据筛选以及数据汇总及透视。

5,数据提取

第五部分是数据提取,也是数据分析中最常见的一个工作。下面介绍每一种函数的使用方法。

按列提取数据

#按列提取 SELECT city FROM data1;

按行提取数据

#按行提取
SELECT * FROM data1 WHERE city='beijing';

按位置提取数据

#按位置提取
SELECT * FROM data1 LIMIT 2,5;

按条件提取数据

#按条件提取并计算
SELECT AVG(price) FROM data1 WHERE city='beijing' AND age<25;

6,数据筛选

第六部分为数据筛选,使用与,或,非三个条件配合大于,小于和等于对数据进行筛选,并进行计数和求和。与excel中的筛选功能和countifs和sumifs功能相似。

按条件筛选(与,或,非)

Excel数据目录下提供了“筛选”功能,用于对数据表按不同的条件进行筛选。mysql中使用WHERE完成筛选 *** 作,配合sum和count函数还能实现excel中sumif和countif函数的功能。

#数据筛选AND
SELECT * FROM data1 WHERE city='shanghai' AND age>30;

#数据筛选IN
SELECT * FROM data1 WHERE city IN ('shanghai','beijing');

#数据筛选OR
SELECT * FROM data1 WHERE city='shanghai' OR age>30;

#数据筛选(不等于)
SELECT * FROM data1 WHERE city !='beijing';

#数据筛选like(模糊筛选)
SELECT * FROM data1 WHERE city LIKE 'bei%';

#筛选后计数 countif
SELECT COUNT(id) AS id_count FROM data1 WHERE city='shanghai'AND age>30;

#筛选后求和 sumtif
SELECT SUM(price) AS price FROM data1 WHERE city='beijing' AND age<30;

#筛选后求均值 averageif
SELECT AVG(price) AS avg_price FROM data1 WHERE city !='beijing';

7,数据分类汇总及透视

第七部分是对数据进行分类汇总,Excel中使用分类汇总和数据透视可以按特定维度对数据进行汇总,mysql中使用的主要函数是GROUP BY和CASE WHEN。下面分别介绍这两个函数的使用方法。

分类汇总

Excel的数据目录下提供了“分类汇总”功能,可以按指定的字段和汇总方式对数据表进行汇总。mysql中通过GROUP BY完成相应的 *** 作,并可以支持多级分类汇总。

GROUP BY是进行分类汇总的函数,使用方法很简单,制定要分组的列名称就可以,也可以同时制定多个列名称,GROUP BY按列名称出现的顺序进行分组。同时要制定分组后的汇总方式,常见的是计数和求和两种。

#单列分类汇总
SELECT city,COUNT(id) AS id_count FROM data1 GROUP BY city ORDER BY id_count;

#多列分类汇总
SELECT city,colour,ROUND(SUM(price),2) AS id_count FROM data1 GROUP BY city,colour;

数据透视

Excel中的插入目录下提供“数据透视表”功能对数据表按特定维度进行汇总。mysql中没有直接提供数据透视表功能。但通过CASE WHEN函数实现同样的效果。

数据透视表也是常用的一种数据分类汇总方式,并且功能上比GROUP BY要强大一些。下面的代码中设定city为行字段,colour为列字段,price为值字段,计算price金额。

#查看原始数据表
SELECT * FROM data1;

#使用CASE WHEN进行数据透视
CREATE VIEW data_Items AS (
 SELECT
 data1.city,
 CASE WHEN colour = "A" THEN price END AS A,
 CASE WHEN colour = "B" THEN price END AS B,
 CASE WHEN colour = "C" THEN price END AS C,
 CASE WHEN colour = "F" THEN price END AS F
 FROM data1
);

#查看结果
SELECT * FROM data_Items;

#对字段进行求和汇总
CREATE VIEW data1_Extended_Pivot AS (
 SELECT
 city,
 SUM(A) AS A,
 SUM(B) AS B,
 SUM(C) AS C,
 SUM(F) AS F
 FROM data_Items
 GROUP BY city
);

#查看结果
SELECT * FROM data1_Extended_Pivot;

#对空值进行处理
CREATE VIEW data1_Extended_Pivot_Pretty AS (
 SELECT 
 city, 
 COALESCE(A, 0) AS A, 
 COALESCE(B, 0) AS B, 
 COALESCE(C, 0) AS C,
 COALESCE(F, 0) AS F
 FROM data1_Extended_Pivot
);

#查看数据透视结果
SELECT * FROM data1_Extended_Pivot_Pretty;

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/887515.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-14
下一篇 2022-05-14

发表评论

登录后才能评论

评论列表(0条)

保存