详解mysql 中的锁结构

详解mysql 中的锁结构,第1张

详解mysql 中的结构

Mysql 支持3中锁结构

  • 表级锁,开销小,加锁快,不会出现死锁,锁定的粒度大,冲突概率高,并发度最低
  • 行级锁,开销小,加锁慢,会出现死锁,锁定粒度小,冲突概率最低,并发度最高
  • 页面锁,开销和加锁处于表锁和行锁之间,会出现死锁,锁粒度基于表和行之间,并发一般

InnoDB锁问题

InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。
 行级锁和表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。

InnoDB的行锁模式及加锁方法

InnoDB实现了以下两种类型的行锁。

  • 共享锁(s):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
  • 排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务取得相同的数据集共享读锁和排他写锁。

另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。

  • 意向共享锁(IS):事务打算给数据行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
  • 意向排他锁(IX):事务打算给数据行加排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。
当前锁模式和请求锁模式 X IX S IS X 冲突 冲突 冲突 冲突 IX 冲突 兼容 冲突 兼容 S 冲突 冲突 兼容 兼容 IS 冲突 兼容 兼容 兼容

InnoDB行锁是通过索引上的索引项来实现的,这一点MySQL与Oracle不同,后者是通过在数据中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味者:只有通过索引条件检索数据,InnoDB才会使用行级锁,否则,InnoDB将使用表锁!

Next-Key锁

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制不是所谓的间隙锁(Next-Key锁)。
举例来说,假如emp表中只有101条记录,其empid的值分别是1,2,...,100,101,下面的SQL:

SELECT * FROM emp WHERE empid > 100 FOR UPDATE

是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。
InnoDB使用间隙锁的目的,一方面是为了防止幻读,以满足相关隔离级别的要求,对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读;另一方面,是为了满足其恢复和复制的需要。有关其恢复和复制对机制的影响,以及不同隔离级别下InnoDB使用间隙锁的情况。
很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。

什么时候使用表锁?

对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个另特殊事务中,也可以考虑使用表级锁。

第一种情况是:事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。

第二种情况是:事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。

当然,应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表。
 在InnoDB下 ,使用表锁要注意以下两点。

(1)使用LOCK TALBES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层MySQL Server负责的,仅当autocommit=0、innodb_table_lock=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁;否则,InnoDB将无法自动检测并处理这种死锁。

(2)在用LOCAK TABLES对InnoDB锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCAK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK产不能释放用LOCAK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁,正确的方式见如下语句。
 例如,如果需要写表t1并从表t读,可以按如下做:

SET AUTOCOMMIT=0;
LOCAK TABLES t1 WRITE, t2 READ, ...;
[do something with tables t1 and here];
COMMIT;
UNLOCK TABLES;

死锁

在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,这就决定了InnoDB发生死锁是可能的。
 发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并退回,另一个事务获得锁,继续完成事务。但在涉及外部锁,或涉及锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过设置锁等待超时参数innodb_lock_wait_timeout来解决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获取所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖垮数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。

通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小、以及访问数据库的SQL语句,绝大部分都可以避免。下面就通过实例来介绍几种死锁的常用方法。

(1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序为访问表,这样可以大大降低产生死锁的机会。如果两个session访问两个表的顺序不同,发生死锁的机会就非常高!但如果以相同的顺序来访问,死锁就可能避免。

(2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低死锁的可能。

(3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应该先申请共享锁,更新时再申请排他锁,甚至死锁。

(4)在REPEATEABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...ROR UPDATE加排他锁,在没有符合该记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可以避免问题。

(5)当隔离级别为READ COMMITED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入 *** 作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。

MyISAM 和 InnoDB 区别

对于MyISAM的表锁,主要有以下几点

(1)共享读锁(S)之间是兼容的,但共享读锁(S)和排他写锁(X)之间,以及排他写锁之间(X)是互斥的,也就是说读和写是串行的。
(2)在一定条件下,MyISAM允许查询和插入并发执行,我们可以利用这一点来解决应用中对同一表和插入的锁争用问题。
(3)MyISAM默认的锁调度机制是写优先,这并不一定适合所有应用,用户可以通过设置LOW_PRIPORITY_UPDATES参数,或在INSERT、UPDATE、DELETE语句中指定LOW_PRIORITY选项来调节读写锁的争用。
(4)由于表锁的锁定粒度大,读写之间又是串行的,因此,如果更新 *** 作较多,MyISAM表可能会出现严重的锁等待,可以考虑采用InnoDB表来减少锁冲突。

对于InnoDB表,主要有以下几点

(1)InnoDB的行销是基于索引实现的,如果不通过索引访问数据,InnoDB会使用表锁。
(2)InnoDB间隙锁机制,以及InnoDB使用间隙锁的原因。
(3)在不同的隔离级别下,InnoDB的锁机制和一致性读策略不同。
(4)MySQL的恢复和复制对InnoDB锁机制和一致性读策略也有较大影响。
(5)锁冲突甚至死锁很难完全避免。

在了解InnoDB的锁特性后,用户可以通过设计和SQL调整等措施减少锁冲突和死锁,包括:

  • 尽量使用较低的隔离级别
  • 精心设计索引,并尽量使用索引访问数据,使加锁更精确,从而减少锁冲突的机会。
  • 选择合理的事务大小,小事务发生锁冲突的几率也更小。
  • 给记录集显示加锁时,最好一次性请求足够级别的锁。比如要修改数据的话,最好直接申请排他锁,而不是先申请共享锁,修改时再请求排他锁,这样容易产生死锁。
  • 不同的程序访问一组表时,应尽量约定以相同的顺序访问各表,对一个表而言,尽可能以固定的顺序存取表中的行。这样可以大减少死锁的机会。
  • 尽量用相等条件访问数据,这样可以避免间隙锁对并发插入的影响。
  • 不要申请超过实际需要的锁级别;除非必须,查询时不要显示加锁。
  • 对于一些特定的事务,可以使用表锁来提高处理速度或减少死锁的可能

MySql乐观锁悲观锁

悲观锁

悲观锁的特点是先获取锁,再进行业务 *** 作,即“悲观”的认为获取锁是非常有可能失败的,因此要先确保获取锁成功再进行业务 *** 作。通常所说的“一锁二查三更新”即指的是使用悲观锁。通常来讲在数据库上的悲观锁需要数据库本身提供支持,即通过常用的select … for update *** 作来实现悲观锁。当数据库执行select for update时会获取被select中的数据行的行锁,因此其他并发执行的select for update如果试图选中同一行则会发生排斥(需要等待行锁被释放),因此达到锁的效果。select for update获取的行锁会在当前事务结束时自动释放,因此必须在事务中使用。

这里需要注意的一点是不同的数据库对select for update的实现和支持都是有所区别的,例如oracle支持select for update no wait,表示如果拿不到锁立刻报错,而不是等待,mysql就没有no wait这个选项。另外mysql还有个问题是select for update语句执行中所有扫描过的行都会被锁上,这一点很容易造成问题。因此如果在mysql中用悲观锁务必要确定走了索引,而不是全表扫描。

乐观锁

乐观锁的特点先进行业务 *** 作,不到万不得已不去拿锁。即“乐观”的认为拿锁多半是会成功的,因此在进行完业务 *** 作需要实际更新数据的最后一步再去拿一下锁就好。

乐观锁在数据库上的实现完全是逻辑的,不需要数据库提供特殊的支持。一般的做法是在需要锁的数据上增加一个版本号,或者时间戳,然后按照如下方式实现:

1. SELECT data AS old_data, version AS old_version FROM …;
2. 根据获取的数据进行业务 *** 作,得到new_data和new_version
3. UPDATE SET data = new_data, version = new_version WHERE version = old_version
if (updated row > 0) {
  // 乐观锁获取成功, *** 作完成
} else {
  // 乐观锁获取失败,回滚并重试
}

在数据库内部update同一行的时候是不允许并发的,即数据库每次执行一条update语句时会获取被update行的写锁,直到这一行被成功更新后才释放。因此在业务 *** 作进行前获取需要锁的数据的当前版本号,然后实际更新数据时再次对比版本号确认与之前获取的相同,并更新版本号,即可确认这之间没有发生并发的修改。如果更新失败即可认为老版本的数据已经被并发修改掉而不存在了,此时认为获取锁失败,需要回滚整个业务 *** 作并可根据需要重试整个过程。

乐观锁在不发生取锁失败的情况下开销比悲观锁小,但是一旦发生失败回滚开销则比较大,因此适合用在取锁失败概率比较小的场景,可以提升系统并发性能
乐观锁还适用于一些比较特殊的场景,例如在业务 *** 作过程中无法和数据库保持连接等悲观锁无法适用的地方

以上就是详解mysql 中的锁结构的详细内容,更多关于MySQL 锁结构的资料请关注脚本之家其它相关文章!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/889854.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-14
下一篇 2022-05-14

发表评论

登录后才能评论

评论列表(0条)

保存