大数据分析工具详尽介绍&数据分析算法

大数据分析工具详尽介绍&数据分析算法,第1张

数据挖掘与数据分析是学什么的

数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

数据挖掘学习的主要方向在于,挖掘的算法,使用什么算法能够得到最好的结果。

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C45, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

数据分析的工具:

Excel作为常用的分析工具,可以实现基本的分析工作,在商业智能领域Cognos、Style Intelligence、Microstrategy、Brio、BO和Oracle以及国内产品如Yonghong Z-Suite BI套件等。

非要说数据挖掘和分析的区别可分为以下几点:

1、“数据分析”的重点是观察数据,而“数据挖掘”的重点是从数据中发现“知识规则”KDD(Knowledge Discover in Database);

2、“数据分析”得出的结论是人的智能活动结果,而“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则;

3、“数据分析”得出结论的运用是人的智力活动,而“数据挖掘”发现的知识规则,可以直接应用到预测。

4、“数据分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。如传统的控制论建模的本质就是描述输入变量与输出变量之间的函数关系,“数据挖掘”可以通过机器学习自动建立输入与输出的函数关系,根据KDD得出的“规则”,给定一组输入参数,就可以得出一组输出量。

Ⅱ 请问你是数据挖掘的研究生数据挖掘研究生阶段都学什么

数据挖掘(Data Mining)就是从大量数据中发现潜在规律、提取有用知识的方法和技术。因为与数据库密切相关,又称为数据库知识发现(Knowledge Discovery in Databases,KDD) ,就是将高级智能计算技术应用于大量数据中,让计算机在有人或无人指导的情况下从海量数据中发现潜在的,有用的模式(也叫知识)。

广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI(商业智能)。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。

数据挖掘的主要功能

1.分类:按照分析对象的属性、特征,建立不同的组类来描述事物。例如:银行部门根据以前的数据将客户分成了不同的类别,现在就可以根据这些来区分新申请贷款的客户,以采取相应的贷款方案。

2.聚类:识别出分析对内在的规则,按照这些规则把对象分成若干类。例如:将申请人分为高度风险申请者,中度风险申请者,低度风险申请者。

3.关联规则和序列模式的发现:关联是某种事物发生时其他事物会发生的这样一种联系。例如:每天购买啤酒的人也有可能购买香烟,比重有多大,可以通过关联的支持度和可信度来描述。与关联不同,序列是一种纵向的联系。例如:今天银行调整利率,明天股市的变化。

4.预测:把握分析对象发展的规律,对未来的趋势做出预见。例如:对未来经济发展的判断。

5.偏差的检测:对分析对象的少数的、极端的特例的描述,揭示内在的原因。例如:在银行的100万笔交易中有500例的欺诈行为,银行为了稳健经营,就要发现这500例的内在因素,减小以后经营的风险。

需要注意的是:数据挖掘的各项功能不是独立存在的,在数据挖掘中互相联系,发挥作用。

数据挖掘的方法及工具

作为一门处理数据的新兴技术,数据挖掘有许多的新特征。首先,数据挖掘面对的是海量的数据,这也是数据挖掘产生的原因。其次,数据可能是不完全的、有噪声的、随机的,有复杂的数据结构,维数大。最后,数据挖掘是许多学科的交叉,运用了统计学,计算机,数学等学科的技术。以下是常见和应用最广泛的算法和模型:

(1) 传统统计方法:① 抽样技术:我们面对的是大量的数据,对所有的数据进行分析是不可能的也是没有必要的,就要在理论的指导下进行合理的抽样。② 多元统计分析:因子分析,聚类分析等。③ 统计预测方法,如回归分析,时间序列分析等。

(2) 可视化技术:用图表等方式把数据特征用直观地表述出来,如直方图等,这其中运用的许多描述统计的方法。可视化技术面对的一个难题是高维数据的可视化。

职业能力要求

基本能力要求

数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。

一、专业技能

硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数据库系统开发经验

熟练掌握常用的数据挖掘算法

具备数理统计理论基础,并熟悉常用的统计工具软件

二、行业知识

具有相关的行业知识,或者能够很快熟悉相关的行业知识

三、合作精神

具有良好的团队合作精神,能够主动和项目中其他成员紧密合作

四、客户关系能力

具有良好的客户沟通能力,能够明确阐述数据挖掘项目的重点和难点,善于调整客户对数据挖掘的误解和过高期望

具有良好的知识转移能力,能够尽快地让模型维护人员了解并掌握数据挖掘方法论及建模实施能力

进阶能力要求

数据挖掘人员具备如下条件,可以提高数据挖掘项目的实施效率,缩短项目周期。

具有数据仓库项目实施经验,熟悉数据仓库技术及方法论

熟练掌握SQL语言,包括复杂查询、性能调优

熟练掌握ETL开发工具和技术

熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的各种统计图形技术

善于将挖掘结果和客户的业务管理相结合,根据数据挖掘的成果向客户提供有价值的可行性 *** 作方案

应用及就业领域

当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation & Classification)、背景分析(Profile Analysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。如果你访问著名的亚马逊网上书店(amazon),会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book also bought”,这背后就是数据挖掘技术在发挥作用。

数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。因此数据挖掘的整个过程都离不开应用领域的专业知识。“Business First, technique second”是数据挖掘的特点。因此学习数据挖掘不意味着丢弃原有专业知识和经验。相反,有其它行业背景是从事数据挖掘的一大优势。如有销售,财务,机械,制造,call center等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。

数据采集分析专员

职位介绍:数据采集分析专员的主要职责是把公司运营的数据收集起来,再从中挖掘出规律性的信息来指导公司的战略方向。这个职位常被忽略,但相当重要。由于数据库技术最先出现于计算机领域,同时计算机数据库具有海量存储、查找迅速、分析半自动化等特点,数据采集分析专员最先出现于计算机行业,后来随着计算机应用的普及扩展到了各个行业。该职位一般提供给懂数据库应用和具有一定统计分析能力的人。有计算机特长的统计专业人员,或学过数据挖掘的计算机专业人员都可以胜任此工作,不过最好能够对所在行业的市场情况具有一定的了解。

求职建议:由于很多公司追求短期利益而不注重长期战略的现状,目前国内很多企业对此职位的重视程度不够。但大型公司、外企对此职位的重视程度较高,随着时间的推移该职位会有升温的趋势。另外,数据采集分析专员很容易获得行业经验,他们在分析过程中能够很轻易地把握该行业的市场情况、客户习惯、渠道分布等关键情况,因此如果想在某行创业,从数据采集分析专员干起是一个不错的选择。

市场/数据分析师

1 市场数据分析是现代市场营销科学必不可少的关键环节: Marketing/Data Analyst从业最多的行业: Direct Marketing (直接面向客户的市场营销) 吧,自90年代以来, Direct Marketing越来越成为公司推销其产品的主要手段。根据加拿大市场营销组织(Canadian Marketing Association)的统计数据: 仅1999年一年 Direct Marketing就创造了470000 个工作机会。从1999至2000,工作职位又增加了30000个。为什么Direct Marketing需要这么多Analyst呢 举个例子, 随着商业竞争日益加剧,公司希望能最大限度的从广告中得到销售回报, 他们希望能有更多的用户来响应他们的广告。所以他们就必需要在投放广告之前做大量的市场分析工作。例如,根据自己的产品结合目标市场顾客的家庭收入,教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告,购买自己的产品或成为客户,从而广告只针对这些特定的客户群。这样有的放矢的筛选广告的投放市场既节省开销又提高了销售回报率。但是所有的这些分析都是基于数据库,通过数据处理,挖掘,建模得出的,其间,市场分析师的工作是必不可少的。

2 行业适应性强: 几乎所有的行业都会应用到数据, 所以作为一名数据/市场分析师不仅仅可以在华人传统的IT行业就业,也可以在 ,银行,零售,医药业,制造业和交通传输等领域服务。

现状与前景

数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。在中国各重点院校中都已经开了数据挖掘的课程或研究课题。比较著名的有中科院计算所、复旦大学、清华大学等。另外, 机构和大型企业也开始重视这个领域。

据IDC对欧洲和北美62家采用了商务智能技术的企业的调查分析发现,这些企业的3年平均投资回报率为401%,其中25%的企业的投资回报率超过600%。调查结果还显示,一个企业要想在复杂的环境中获得成功,高层管理者必须能够控制极其复杂的商业结构,若没有详实的事实和数据支持,是很难办到的。因此,随着数据挖掘技术的不断改进和日益成熟,它必将被更多的用户采用,使更多的管理者得到更多的商务智能。

根据IDC(International Data Corporation)预测说2004年估计BI行业市场在140亿美元。现在,随着我国加入WTO,我国在许多领域,如金融、保险等领域将逐步对外开放,这就意味着许多企业将面临来自国际大型跨国公司的巨大竞争压力。国外发达国家各种企业采用商务智能的水平已经远远超过了我国。美国Palo Alto 管理集团公司1999年对欧洲、北美和日本375家大中型企业的商务智能技术的采用情况进行了调查。结果显示,在金融领域,商务智能技术的应用水平已经达到或接近70%,在营销领域也达到50%,并且在未来的3年中,各个应用领域对该技术的采纳水平都将提高约50%。

现在,许多企业都把数据看成宝贵的财富,纷纷利用商务智能发现其中隐藏的信息,借此获得巨额的回报。国内暂时还没有官方关于数据挖掘行业本身的市场统计分析报告,但是国内数据挖掘在各个行业都有一定的研究。据国外专家预测,在今后的5—10年内,随着数据量的日益积累以及计算机的广泛应用,数据挖掘将在中国形成一个产业。

众所周知,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、 机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大。如果能将数据挖掘技术与个人已有专业知识相结合,您必将开辟职业生涯的新天地!

职业薪酬

就目前来看,和大多IT业的职位一样,数据仓库和数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺,在二线成熟,高端数据仓库和数据挖掘方面的人才尤其稀少。高端数据仓库和数据挖掘人才需要熟悉多个行业,至少有3年以上大型DWH和BI经验,英语读写流利,具有项目推动能力,这样的人才年薪能达到20万以上。

职业认证

1、SAS认证的应用行业及职业前景

SAS全球专业认证是国际上公认的数据挖掘和商业智能领域的权威认证,随着我国IT环境和应用的日渐成熟,以上两个领域将有极大的行业发展空间。获取SAS全球专业认证,为您在数据挖掘、分析方法论领域积累丰富经验奠定良好的基础,帮助您开辟职业发展的新天地。

2、SAS认证的有效期

目前SAS五级认证没有特定有效期,但是时间太久或版本太老的认证证书会有所贬值。

3、五级认证的关系

五级认证为递进式关系,即只有通过上一级考试科目才能参加下一级认证考试。

4、SAS全球认证的考试方式

考试为上机考试,时间2个小时,共70道客观题。

相关链接

随着中国物流行业的整体快速发展,物流信息化建设也取得一定进展。无论在IT硬件市场、软件市场还是信息服务市场,物流行业都具有了一定的投资规模,近两年的总投资额均在20-30亿元之间。 对现代物流业发展的积极支持、物流市场竞争的加剧等因素有力地促进了物流信息化建设的稳步发展。

易观国际最新报告《中国物流行业信息化年度综合报告2006》中指出,中国物流业正在从传统模式向现代模式实现整体转变,现代物流模式将引导物流业信息化需求,而产生这种转变的基本动力来自市场需求。报告中的数据显示:2006-2010年,传统物流企业IT投入规模将累计超过100亿元人民币。2006-2010年,第三方物流企业IT投入规模将累计超过20亿元人民币。

由于目前行业应用软件系统在作业层面对终端设备的硬件提出的应用要求较高,而软件与硬件的集成性普遍不理想,对应性单一,因此企业将对软件硬件设备的集成提出更高要求。

物流行业软件系统研发将更多的考虑运筹学与数据挖掘技术,专业的服务商将更有利于帮助解决研发问题。

物流科学的理论基础来源于运筹学,并且非常强调在繁杂的数据处理中找到关联关系(基于成本-服务水平体系),因此数据挖掘技术对于相关的软件系统显得更为重。

Ⅲ 数据挖掘统计的课程内容是什么

哥们,我是做数据挖掘的研狗,了解一些生物科技方面大数据的应用。

首先听回过的所有的数据答挖掘的报告中,有具体成果的全都是国外的机构,可能是我听的少,国内的生物科技数据挖掘都是讲理论。这东西讲理论有个毛用。

如果有资本的话(年龄、家庭支持),还是找个好学校读研,本身生物科技+数据挖掘就比较高端。

数据挖掘和数据统计不是一样的。。。。

简单的拿工资讲,北京硕士毕业进数据分析岗位,8k一月,如果进的是数据挖掘团队,大概能有20w~30w

每年。

Ⅳ 数据分析有哪些相关的培训课程

据分析师的课程包括两个层面的内容,只有把数据分析师的这些课程都学会并且运用,你就可以成为一名顶级的大数据分析师。

一、课程层面

第一级别:数据分析课程内容主要是从理论-实 *** -案例应用步步进阶,能让学员充分掌握概率论和统计理论基础,能够熟练运用Excel、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。

第二级别:在第一级别的基础上,第二级别包括建模分析师与大数据分析师,即为企业决策提供及时有效、易实现、可信赖的数据支持。建模分析师,指在ZF、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。本课程针对数据挖掘整套流程,以金融、电信、电商和零售业为案例背景深入讲授数据挖掘的主要算法。并将SAS Enterprise Miner、SPSS Moderler、SAS编程和SQL进行有效的结合,让学员胜任全方位的数据挖掘运用场景。大数据分析师,本课程以大数据分析为目标,从数据分析基础、JAVA语言入门和linux *** 作系统入门知识学起,系统介绍Hadoop、HDFS、MapRece和Hbase等理论知识和hadoop的生态环境,详细演示hadoop三种模式的安装配置,以案例的形式,重点讲解基于mahout项目的大数据分析之聚类、分类以及主题推荐。通过演示实际的大数据分析案例,使学员能在较短的时间内理解大数据分析的真实价值,掌握如何使用hadoop架构应用于大数据分析过程,使学员能有一个快速提升成为兼有理论和实战的大数据分析师,从而更好地适应当前互联网经济背景下对大数据分析师需求的旺盛的就业形势。

二、数据分析师的知识结构

Ⅳ 大数据挖掘学习课程一般学习多长时间

在北京学过,5个月。魔据据说条件不错,但是还是要试听考察的。不管是否有基础学习都是没有问题的,主要看的是自身学习是不是用心,够不够努力,也可以去实际了解一下。

Ⅵ SAS数据挖掘的课程内容是什么

数据挖掘课程包括:

sas/data miner模块,包括sas/data

miner模块的常用工具,对商业问题的界定、导入数据、内数据探视、变量转换、数据集设置容、缺失值处理、各种预测、描述类分析算法、模型评估、显示得分结果等。通过培训使学员掌握使用sas的data

miner(数据挖掘)模块,能够利用sas/data miner对一些常见的商业数据进行数据分析,挖掘出商业价值。

来源。商业智能和数据仓库爱好者

提供,,,,商业智能和云计算,。、,,陪训,。,。包含SAS数据挖掘课程

Ⅶ 数据分析数据挖掘培训课程哪个好

你好,多比较多分析,要多听一听大家的口述意见。

Ⅷ 大数据挖掘学习课程需要多久

去年学的学了5个月,魔据条件不错,我自己认为五十人左右还是可以接受的,但是还是自身要足够努力才行,像有些机构一百人以上,那就有点接受不了了,感觉老师也顾忌不过来不要去,可以去实际考察一下。

Ⅸ 大数据专业主要学什么课程

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

以中国人民大学为例:

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

(9)数据挖掘相关课程扩展阅读:

大数据岗位:

1、大数据系统架构师

大数据平台搭建、系统设计、基础设施。

技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。

2、大数据系统分析师

面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。

技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。

3、hadoop开发工程师。

解决大数据存储问题。

4、数据分析师

不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。

5、数据挖掘工程师

做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。

Ⅹ 攻读数据挖掘方向的研究生需要本科学习过哪些课程

就学基础的计算机课程即可,因为研究生的时候还会开设一些有关数据挖掘的课程。

每一个大数据的爱好者应该心目中都有一个数据分析师的梦吧,我们都知道数据分析师是一个非常神秘的职位,看着一堆数据就能洞悉全局,很神奇吧,今天来给大家送福利了,想提高你的数据分析能力吗,看下文吧。

1Excel是否精钻?

除了常用的Excel函数(sum、average、if、countifs、sumifs、offset、match、index等)之外,Excel图表(饼图、线图、柱形图、雷达图等)和简单分析技能也是经常用的,可以帮助你快速分析业务走势和异常情况;另外,Excel里面的函数结合透视表以及VBA功能是完善报表开发的利器,让你一键轻松搞定报表。

2你需要更懂数据库

常用的数据库如MySQL,Sql Server、Oracle、DB2、MongoDB等;除去SQL语句的熟练使用,对于数据库的存储读取过程也要熟练掌握。在对于大数据量处理时,如何想办法加快程序的运行速度、减少网络流量、提高数据库的安全性是非常有必要的。

3掌握数据整理、可视化和报表制作

数据整理,是将原始数据转换成方便实用的格式,实用工具有Excel、R、Python等工具。数据可视化,是创建和研究数据的视觉表现,方便业务方快速分析数据并定位具体问题,实用工具有Tableau、FineBI、Qlikview

如果常用excel,那需要用PPT展示,这项技能也需要琢磨透。如果用tableau、FineBI之类的工具做数据可视化,FineBI有推送查看功能,也就是在企业上下建立一套系统,通过权限的分配让不同的人看到权限范围内的报表。

4多学几项技能

大多数据分析师都是从计算机、数学、统计这些专业而来的,也就意味着数学知识是重要基础。尤其是统计学,更是数据分析师的基本功,从数据采集、抽样到具体分析时的验证探索和预测都要用到统计学。

现在社会心理学也逐渐囊括到数据分析师的能力体系中来了,尤其是从事互联网产品运营的同学,需要了解用户的行为动向,分析背后的动机。把握了整体方向后,数据分析的过程也就更容易。

第一阶段:Hadoop生态架构技术

1、语言基础

Java:多理解和实践在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化就可以,不需要深入掌握。

Linux:系统安装、基本命令、网络配置、Vim编辑器、进程管理、Shell脚本、虚拟机的菜单熟悉等等。

Python:基础语法,数据结构,函数,条件判断,循环等基础知识。

2、环境准备

这里介绍在windows电脑搭建完全分布式,1主2从。

VMware虚拟机、Linux系统(Centos65)、Hadoop安装包,这里准备好Hadoop完全分布式集群环境。

3、MapReduce

MapReduce分布式离线计算框架,是Hadoop核心编程模型。

4、HDFS10/20

HDFS能提供高吞吐量的数据访问,适合大规模数据集上的应用。

5、Yarn(Hadoop20)

Yarn是一个资源调度平台,主要负责给任务分配资源。

6、Hive

Hive是一个数据仓库,所有的数据都是存储在HDFS上的。使用Hive主要是写Hql。

7、Spark

Spark 是专为大规模数据处理而设计的快速通用的计算引擎。

8、SparkStreaming

Spark Streaming是实时处理框架,数据是一批一批的处理。

9、SparkHive

Spark作为Hive的计算引擎,将Hive的查询作为Spark的任务提交到Spark集群上进行计算,可以提高Hive查询的性能。

10、Storm

Storm是一个实时计算框架,Storm是对实时新增的每一条数据进行处理,是一条一条的处理,可以保证数据处理的时效性。

11、Zookeeper

Zookeeper是很多大数据框架的基础,是集群的管理者。

12、Hbase

Hbase是一个Nosql数据库,是高可靠、面向列的、可伸缩的、分布式的数据库。

13、Kafka

kafka是一个消息中间件,作为一个中间缓冲层。

14、Flume

Flume常见的就是采集应用产生的日志文件中的数据,一般有两个流程。

一个是Flume采集数据存储到Kafka中,方便Storm或者SparkStreaming进行实时处理。

另一个流程是Flume采集的数据存储到HDFS上,为了后期使用hadoop或者spark进行离线处理。

第二阶段:数据挖掘算法

1、中文分词

开源分词库的离线和在线应用

2、自然语言处理

文本相关性算法

3、推荐算法

基于CB、CF,归一法,Mahout应用。

4、分类算法

NB、SVM

5、回归算法

LR、DecisionTree

6、聚类算法

层次聚类、Kmeans

7、神经网络与深度学习

NN、Tensorflow

假如产品表为 tb ,表中有产品编号字段, 销售表为 tb2有销售数量字段,他们通过产品id关联

如果是求所有销售数量的总和

select tb产品编号,svm(销售数量) as 总销售数量

from the inner join tb2 on tb产品id=tb2产品id

以上就是关于大数据分析工具详尽介绍&数据分析算法全部的内容,包括:大数据分析工具详尽介绍&数据分析算法、信息安全课程简介、数据挖掘相关课程等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9269080.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存