1、如果之前有通过SQL做过备份,可通过打开SQL的企业管理器
找到任我行81的数据库,右键-所有任务-还原数据库。
2、如果之前没有通过SQL备份,在你新安装了任我行之后,在CRM的安装目录下找DATABASE目录下会有bak格式的文件,按第一种方法恢复。
3、如果都没有,找到原CRM的安装目录下找DATABASE目录里的DAT_XXXXmdf和LOG_xxxxldf,然后打开SQL的企业管理器,找到现有的CRM数据库,删除后,再附加数据库,附加数据库的时候选DAT_XXXXmdf和LOG_xxxxldf这两个文件。
如果上面三种方法都不行,通过硬盘修复的方式找回备份文件再按上面的方法执行吧。
(一)、客户数据寻找以及辨别
想要进行客户数据挖掘,不可缺少的就是客户数据。首先就是要利用多种多样的渠道去收集客户的数据,无论是线下获取还是线上获取的客户数据都可以利用crm系统进行分析,对不同的客户群体采用不同的营销计划,抓住客户的兴趣。
CRM系统可以全方位的对客户资料以及信息进行辨别,当客户联系企业销售人员时,可以第一时间知道是哪位客户,还可以避免多个销售人员对同个客户进行跟进,大大提升了企业销售人员的工作效率。
(二)、客户数据的分析
客户数据进行多维度的分析,挖掘出客户的需求,客户的数据大多包括:姓名、年龄、地址、收入、行业、职业、教育程度、来源等等。可以对这些数据进行多维度的分析,利用Rushcrm系统的报表功能,快速分析筛选出符合条件的客户数量以及名单,也可以对客户的行为进行分析,结合客户信息和客户的的消费行为,根据不同的消费行为,制定不同的营销方式,并筛选出优质客户,进行个性化的营销,可以推荐企业的快速发展。
(三)、维持客户的忠诚度
客户的忠诚度主要是由企业的产品质量、价格、服务等等因素的影响,让客户对企业的某款产品或者服务产生情感,并且可能会重复购买产品或服务的程度,这也是企业能留住老客户的主要条件之一。
企业维持客户忠诚度包括建立长期的情感联系、售后服务的管理等等,而在建立长期的情感联系时,销售人员可能会因为事情太多等情况而忘记回访客户,导致客户的忠诚度下降。在CRM客户管理系统中,可以定期的提醒销售人员该回访哪个客户,并且还可以在客户生日等特殊节日,为客户发送祝福短信、邮件,为客户提供一对一的客户服务,对客户做到个性化的营销方式,不仅能维持客户的忠诚度,还能增加客户的复购率,挖掘出客户的潜力。
目前,关于CRM中应用的数据挖掘技术和方法的研究有很多,不同行业、不同环境下企业的CRM应用差异很大,应用到的具体数据挖掘技术和方法也会不同。数据挖掘技术和方法层出不穷,在这里也难以涵盖全部的技术和方法。虽然,不同的CRM应用到的数据挖掘技术很多,也很复杂、但是CRM应用数据挖掘的目的主要在于以下四个方面:客户细分、获取新客户、提升客户价值和保持客户以防止流失等方面。数据挖掘在零售业CRM中主要应用在以下几方面。 一、CRM实施的前提--客户细分 客户细分就是把客户根据其性别、收入、交易行为特征等属性细分为具有不同需求和交易习惯的群体,同一群体中的客户对产品的需求的及交易心理等方面具有相似性,而不同群体间差异较大。客户群体细分可以使企业在市场营销中制定正确的营销策略,通过对不同类别客户提供有针对性的产品和服务,提高客户对企业和产品的满意度,以获取更大的利润。 客户细分可以采用分类的方法,也可以采用聚类的方法。比如,可以将客户分为高价值和低价值的客户,然后确定对分类有影响的因素,再将拥有相关属性的客户数据提取出来,选择合适的算法对数据进行处理得到分类规则。使用聚类的方法,则在之前并不知道客户可以分为几类,在将数据聚类后,再对结果数据进行分析,归纳出相似性和共性。 每一类别的客户具有相似性的属性,而不同类别客户的属性也不同,从而确定特定消费群体或个体的兴趣、消费习惯、消费倾向和消费需求,进而推断出相应消费群体或个体下一步的消费行为。细分可以让用户从比较高的层次上来察看整个数据库中的数据,也使得企业可以针对不同的客户群采取不同的营销策略,有效地利用有限的资源。合理的客户细分是实施客户关系管理的基础。 二、获取新客户--客户响应分析 在大多数商业领域中,业务发展的主要指标里都包括新客户的获取能力。新客户的获取包括发现那些对你的产品不了解的顾客,他们可能是你的产品的潜在消费者,也可能是以前接受你的竞争对手服务的顾客。在寻找新客户之前,企业应该确定哪些客户是可能的潜在客户、哪些客户容易获得、哪些客户较难获得,从而使企业有限的营销资源得到最合理的利用。因此,预测潜在客户对企业销售推广活动的反应情况是客户获得的前提,由于潜在客户的数量日益庞大,如何提高市场促销活动的针对性和效果成为获取新客户的关键问题。数据挖掘可以帮助企业识别出潜在的客户群,提高客户对市场营销活动的相应率,使企业做到心中有数、有的放矢。根据企业给定的一系列客户资料及其他输入,数据挖掘工具可以建立一个“客户反应”预测模型,利用这个模型可以计算出客户对某个营销活动的反应指标,企业根据这些指标就可以找出那些对企业所提供的服务感兴趣的客户,进而达到获取客户的目的。数据挖掘技术中的关联分析、聚类和分类功能可以很好地完成这种分析。 三、提升客户价值--交叉销售 交叉销售是指企业向原有客户销售新的产品或服务的营销过程,它不仅是通过对现有客户扩大销售来增加利润的一个有效手段,而且还是提升企业形象、培养客户忠诚度、保障企业可持续发展的重要战略。 公司与其客户之间的商业关系是一种持续的、不断发展的关系。在客户与公司建立起这种双向的商业关系之后,可以有很多种方法来优化这种关系,延长这种关系的时间。在维持这种关系期间,增加互相的接触,努力在每一次互相接触中获得更多的利润。而交叉销售就是这种工具,即向现有的客户提供新的产品和服务的过程。 在交叉销售活动中,数据挖掘可以帮助企业分析出最优的销售匹配方式。在企业所掌握的客户信息,尤其是以前购买行为的信息中,可能正包含着这个客户决定他下一个购买行为的关键,甚至决定因素。通过相关分析,数据挖掘可以帮助分析出最优的、最合理的销售匹配。一般过程是这样,首先分析现有客户的购买行为和消费习惯数据,然后用数据挖掘的一些算法对不同销售方式下的个体行为进行建模;其次是用建立的预测模型对客户将来的消费行为进行预测分析,对每一种销售方式进行评价;最后用建立的分析模型对新的客户数据进行分析,以决定向客户提供哪一种交叉销售方式最合适。有几种数据挖掘方法可以应用于交叉销售。关联规则分析,能够发现顾客倾向于关联购买哪些商品;聚类分析,能够发现对特定产品感兴趣的用户群;神经网络、回归等方法,能够预测顾客购买该新产品的可能性。 相关分析的结果可以用在交叉销售的两个方面:一方面是对于购买频率较高的商品组合,找出那些购买了组合中大部分商品的顾客,向他们推销“遗漏的”商品;另一方面是对每个顾客找出比较适用的相关规律,向他们推销对应的商品系列。 四、保持客户--客户流失分析 随着企业竞争越来越激烈,企业获取新客户的成本不断上升。对大多数企业而言,获取一个新客户的花费大大超过保持一个已有客户的费用,保持原有客户的工作越来越有价值,这已经成为大多数企业的共识。你保留一个客户的时间越长,收取你在这个客户身上所花的初期投资和获取费用的时间也越长,你从客户身上获得的利润就越多。但由于各种因素的不确定性和市场的不断增长,以及一些竞争对手的存在,很多客户为了寻求更低的费用和其他服务商为新客户提供比你更多的额外优惠条件,不断地从你这里转向另一个服务商。我们把客户从一个服务商转向到另一个服务商的行为称之为客户转移。为了分析出是哪些主要因素导致客户转移,并可以有针对性地挽留那些有离开倾向的客户,我们可以通过使用数据挖掘工具为已经流失的客户建模,识别导致他们转移的模式,然后用这些找出当前客户中可能流失的客户,以便企业针对客户的需要,采取相应的措施防止客户的流失,进而达到保持原有客户的目的。 解决客户流失问题,首先需要明确流失的客户是什么样的客户。如果流失的是劣质客户,企业求之不得;如果流失的是优质客户,企业则损失巨大。如果企业优质客户的稳定期越长,企业与其维持关系的成本越低,获得的收益越大。因此,为保持优质客户,需要先辨识优质客户。这通过前面的客户细分就可以完成这项工作,分析出客户盈利能力,辨识和预测客户的优劣。当能够辨识出客户的优劣时,首先,根据已流失客户数据,可以利用决策树,神经网络等进行分析挖掘,发现流失客户特征;然后,对现有客户消费行为进行分析,以确定每类客户流失的可能性,其中着重于发现那些具有高风险转移可能性并具有较高商业价值的客户,在这些客户转移到同行业其他服务商那里之前,采取相应的商业活动措施来保持住这些有价值的客户。我们把这个过程叫做客户保留或客户保持。 在选择数据挖掘工具时,若希望能够对客户进行细分,并且能够对客户流失的原因有比较清晰的了解,那么决策树工具是比较好的选择。尽管其他的一些数据挖掘技术,如神经元网络也可以产生很好的预测模型,但是这些模型很难理解。当用这些模型做预测分析时,很难对客户的流失原因有深入的了解,更得不到对付客户流失的任何线索。在这种情况下,也可使用细分技术和聚类技术来得到深入的了解,但用这些技术生成预测模型就相对复杂得多。一般来说,在客户保持中,大多使用分类回归决策树来生成预测模型。 综上所述,数据挖掘在CRM中有着广泛的应用,从某个角度可以说它是CRM的灵魂。通过运用数据挖掘的相关技术,发现数据中存在的关系与规则,为管理者提供重要的决策参考,用来制定准确地市场策略。并且,通过销售和服务等部门与客户交流,争取最优化的满足客户的需求,提高客户忠诚度和满意度、提升客户价值、提高企业收益,达到企业与客户的“双赢”局面。正是这一点,使得CRM得到了很大成功。 目前,关于CRM中应用的数据挖掘技术和方法的研究有很多,不同行业、不同环境下企业的CRM应用差异很大,应用到的具体数据挖掘技术和方法也会不同。数据挖掘技术和方法层出不穷,在这里也难以涵盖全部的技术和方法。
crm系统的特征:高可控性的数据库、更高的安全性、数据实时更新、性价比可能更高、不易受外部因素干扰。
CRM即客户关系管理系统,是以客户数据的管理为核心,利用信息科学技术,实现市场营销、销售、服务等活动自动化,并建立一个客户信息的收集、管理、分析、利用的系统,帮助企业实现以客户为中心的管理模式。客户关系管理既是一种管理理念,又是一种软件技术。客户关系管理系统主要有高可控性的数据库、更高的安全性、数据实时更新等特点,提供日程管理、订单管理、发票管理、知识库管理等功能。
第一你是什么CRM,第二如果你有CRM那么你肯定有CRM数据库,第三样本数据库就是你CRM中的数据库,因为你的客户数据全部在里面,日常的 *** 作和维护的客户信息和业务数据就是你的原始样本库,第四如果你没有CRM软件的话请先架设一个。
一种方式是通过API接口的方式,把之前系统和新系统进行对接,进行导入,这种方法的好处是数据不容易丢失,坏处是成本高。
另外一种是大部分crm都提供导入和导出的功能,把之前系统中数据导出来,按照新系统导入的格式和方式,经过人工整理,导入到新系统中,好处是成本低,坏处是数据极易丢失。
还有一种是让系统服务商提供更好的导入导出的方法。
以上就是关于任我行协同CRM系统重装后无法恢复数据库怎么处理全部的内容,包括:任我行协同CRM系统重装后无法恢复数据库怎么处理、CRM如何进行客户数据挖掘、数据挖掘技术在CRM系统中的应用有哪些方面等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)