图像数据库系统由数据输入系统、数据表示与管理系统、数据检索与 *** 作系统和应用系统组成。图像数据库系统处理的对象包括图像数据、地图、图形数据、一般文本、图形等,统称为模式数据。数据输入系统从模式数据中提取计算机可以使用的信息。一个典型的例子是自动地将图输入系统。典型的应用系统包括:利用地图数据的地理信息系统、利用遥感图像的土地信息系统、利用各种绘图数据的计算机辅助设计系统、计算机动画设计系统以及其他图像处理和图案信息处理系统。
今天真是一个美好的时代,有无数的开源系统可以为我们提供服务,现在有许多开发软件可以用到工业大数据中,当然很多系统还不成熟,应用到工业中还需要小心,并且需要开发人员对其进行一定的优化和调整。下面就简单介绍一些开源的大数据工具软件,看看有哪些能够应用到工业大数据领域。
下面这张图是我根据网上流传的一张开源大数据软件分类图整理的:
我们可以把开源大数据软件分成几类,有一些可以逐步应用到工业大数据领域,下面就一一介绍一下这些软件。(以下系统介绍大都来源于网络)
1、数据存储类
(1)关系数据库MySQL
这个就不用太多介绍了吧,关系型数据库领域应用最广泛的开源软件,目前属于 Oracle 旗下产品。
(2)文件数据库Hadoop
Hadoop是大数据时代的明星产品,它最大的成就在于实现了一个分布式文件系统(Hadoop Distributed FileSystem),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上,而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。
Hadoop可以在工业大数据应用中用来作为底层的基础数据库,由于它采用了分布式部署的方式,如果是私有云部署,适用于大型企业集团。如果是公有云的话,可以用来存储文档、视频、图像等资料。
(3)列数据库Hbase
HBase是一个分布式的、面向列的开源数据库,HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
基于Hbase开发的OpenTSDB,可以存储所有的时序(无须采样)来构建一个分布式、可伸缩的时间序列数据库。它支持秒级数据采集所有metrics,支持永久存储,可以做容量规划,并很容易的接入到现有的报警系统里。
这样的话,它就可以替代在工业领域用得最多的实时数据库。
(4)文档数据库MongoDB
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
MongoDB适合于存储工业大数据中的各类文档,包括各类图纸、文档等。
(5)图数据库Neo4j/OrientDB
图数据库不是存放的,是基于图的形式构建的数据系统。
Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、 企业级 的数据库的所有好处。
OrientDB是兼具文档数据库的灵活性和图形数据库管理 链接 能力的可深层次扩展的文档-图形数据库管理系统。可选无模式、全模式或混合模式下。支持许多高级特性,诸如ACID事务、快速索引,原生和SQL查询功能。可以JSON格式导入、导出文档。若不执行昂贵的JOIN *** 作的话,如同关系数据库可在几毫秒内可检索数以百记的链接文档图。
这些数据库都可以用来存储非结构化数据。
2、数据分析类
(1)批处理MapReduce/Spark
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。
这些大数据的明星产品可以用来做工业大数据的处理。
(2)流处理Storm
Storm是一个开源的分布式实时计算系统,可以简单、可靠的处理大量的数据流。Storm有很多使用场景:如实时分析,在线机器学习,持续计算,分布式RPC,ETL等等。Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个结点每秒可以处理数以百万计的消息)。Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。
(3)图处理Giraph
Giraph是什么?Giraph是Apache基金会开源项目之一,被定义为迭代式图处理系统。他架构在Hadoop之上,提供了图处理接口,专门处理大数据的图问题。
Giraph的存在很有必要,现在的大数据的图问题又很多,例如表达人与人之间的关系的有社交网络,搜索引擎需要经常计算网页与网页之间的关系,而map-reduce接口不太适合实现图算法。
Giraph主要用于分析用户或者内容之间的联系或重要性。
(4)并行计算MPI/OpenCL
OpenCL(全称Open Computing Language,开放运算语言)是第一个面向 异构系统 通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算 服务器 、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在 游戏 、 娱乐 、科研、医疗等各种领域都有广阔的发展前景。
(5)分析框架Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
(6)分析框架Pig
Apache Pig 是apache平台下的一个免费开源项目,Pig为大型数据集的处理提供了更高层次的抽象,很多时候数据的处理需要多个MapReduce过程才能实现,使得数据处理过程与该模式匹配可能很困难。有了Pig就能够使用更丰富的数据结构。[2]
Pig LatinPig Latin 是一个相对简单的语言,一条语句 就是一个 *** 作,与数据库的表类似,可以在关系数据库中找到它(其中,元组代表行,并且每个元组都由字段组成)。
Pig 拥有大量的数据类型,不仅支持包、元组和映射等高级概念,还支持简单的数据类型,如 int、long、float、double、chararray 和 bytearray。并且,还有一套完整的比较运算符,包括使用正则表达式的丰富匹配模式。
DB-Engines 数据库流行度排行榜 6 月更新已发布,排名前二十如下:总体排名和上个月相比基本一致,其中排名前三的 Oracle、MySQL 和 Microsoft SQL Server 也是分数增加最多的三个数据库,增加的分数分别为 1367、467 和 1557,三者的总分也均已超过一千。
图形数据库(graphic database)是利用计算机将点、线、画霹图形基本元素按一定数据结同灶行存储的数据集合,将地图与其它类型的平面图中的图形描述为点、线、面等基本元素,并将这些图形元素按一定数据结构(通常为拓扑数据结构)建立起来的数据集合。包括两个层次:第一层次为拓扑编码的数据集合,由描述点、线、面等图形元素间关系的数据文件组成,包括多边形文件、线段文件、结点文件等。文件间通过关联数据项相互联系;第二层次为坐标编码数据集合,由描述各图形元素空间位置的坐标文件组成。图形数据库仍是目前地理信息系统中对矢量结构地图数字化数据进行组织的主要形式。
我使用过,我一般是这么处理的,如下(我用的vb,你可以转变成access里的代码):
是可以放到数据库里面的,以ACCESS为例子,要使用OLE数据类型,
然后把转化为长二进制数据存入,读取的时候可以生成系统隐藏的图
片然后在控件中显示
Dim cc() As Byte
Dim i
Dim t
Private Sub Command1_Click()
CommonDialog1Filter = "JPG(BMP)|BMP"
CommonDialog1ShowOpen
If CommonDialog1FileName <> "" Then
Picture1Picture = LoadPicture(CommonDialog1FileName)
strname = CommonDialog1FileName
Open strname For Binary As #1
ReDim cc(LOF(1) - 1)
t = cc(LOF(1) - 1) '在读取二进制时,如果是用文件 *** 作那么涉及到到底从文件中取多少字节的问题,所以字节数组要指定大小
Get #1, , cc
Close
Else
MsgBox "没有选中"
End If
End Sub
Private Sub Command2_Click()
Adodc1Refresh
Adodc1RecordsetAddNew
Adodc1RecordsetFields("id") = i
Adodc1RecordsetFields("qq") = cc
i = i + 1
Adodc1RecordsetUpdate
Adodc1Refresh
End Sub
Private Sub Command3_Click()
Adodc1Refresh
Dim P() As Byte
Adodc1RecordSource = "select qq from 表一 where id='" & Text1Text & "'"
P = Adodc1RecordsetFields("qq") '当把一组二进制数据赋值给一个二进制数组时就不用指定数组的大小了,因为是全部赋值
Open AppPath & "\oobmp" For Binary As #1
Put #1, , P
Close
End Sub
Private Sub Command4_Click()
Open AppPath & "\oobmp" For Binary As #1
Put #1, , cc
Close
End Sub
Private Sub Form_Load()
i = 1
End Sub
保存到数据库中,有两种方法:
1、一种是用大对象,即blob型,对c#不了解,但是java、c++中都有专门 *** 作blob的对象,应该是以二进制流的方式走的。但是不建议采用这样的管理方式,会加重数据库、程序负担,即使是手机开发也是如此。
2、保存在本地,数据库中用字符串存储地址,这样的方式比较好,也较易实现。但是缺乏安全性,把重命名就行了,改个后缀,一般人就不会打开。还是不放心,用二进制加密下就好,这样的程序代价仍然要比存在数据库大对象中要好。
以上就是关于哪类数据库处理图像类数据全部的内容,包括:哪类数据库处理图像类数据、漫谈工业大数据9:开源工业大数据软件简介(上)、国内图数据库排名前三的有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)