数据库应该怎么学
联系性:互联网诞生的基础是联系性,一个人做不了互联网,很多很多的人或者终端联系在一起才叫做互联网,那么,互联网的发展就是不断在拓展这种联系性,有简单到复杂、由单一到多元,从空白到建立,互联网正在改变着我们生活的每个层面--这个改变就是互联的建立,它向每一个角落延伸,它延伸的每一个地方,联系性的方式都会改变。比如,原来你要上商场去买衣服,现在不用了网上就可以解决,不好了还可以调换,比在商场还要灵活,我们看到,它的****变化了,所以,线下很多服装商场就倒闭了,开不下去了。
价值的串联:我们知道,互联网的发展是因为给我们带来了极大的便利性,这个便利性就是价值,原来我们办个事情很麻烦,现在很多变得不麻烦了,比如转个账什么的你就不要跑银行排队了,微信或者网上就办理了。这就是价值。为什么互联网的联系会越来越广泛,延伸的领域越来越多,因为它创造了价值,价值传递的方式被改变了,它用给你带来的N多个好处帮你创造了越来越多的便利,形成了一个价值的串联和传递。
技术:无论是联系性还是价值串联,它是通过什么实现的技术,互联网技术。互联网是个工具,是个技术工具,它要通过技术实现来达到联系性和价值传递的目标。也就是说,以往你要为消费者服务是通过人工等其他手段来进行的,现在你要考虑运用互联网技术来实现这个服务。从这个角度看你真不能把互联网看得太高,因为,从根因上讲它就是个信息互联的技术,它本身与思维关联不大,而与技术实现的开发紧密相连,这是很多人不认可互联网思维的原因之一。
运营标签化
早期商场运营是以围绕商家及货品管理为核心,强调商家的聚合、业态的丰富、产品的齐全来吸引消费者。而传统的大众消费客群市场正在被有特殊喜好趋同的个性消费群体逆袭,具有自身鲜明主题和标签IP的商业项目从市场脱颖而出,并拥有了一批高粘度的粉丝。
大数据便能有效结合线上线下、场内场外,全面认识消费者属性和标签,从原来对于“人”模糊认知,到“精准化,清晰化”呈现。通过多维度的场内外数据分析,提炼目标消费者的标签,从而在线下经由标签构建项目价值观体系,使得项目成为固定标签人群的流量入口,同时形成低频消费向高频消费的转换。
以杭州某项目为例,中商数据对整个杭州市207万台移动设备APP进行索引,发现项目核心辐射范围内消费客群有着明显的“二次元(动漫喜好者)”标签,也就是说,该部分客群的线上消费痕迹有很明显的韩风和日风倾向,于是,推荐商场运营在线下开发该类型的主题街区和相关主题活动。
大数据和云计算的关系
从技术上来看,大数据和云计算的关系就像一枚硬币的正反面一样密不可分。
大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
云时代的来临,大数据的关注度也越来越高,分析师团队认为大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模的并行处理数据库、数据挖掘、分布式文件系统、分布式数据可、云计算平台、互联网和可扩展的存储系统。
1、 自己在windows和linux上安装了mysql,自学linux的基础知识,学习mysql的最基础的知识,即怎么写sql,存储过程,表的设计等,从0到熟悉大概花了3个月 ,推荐《mysql入门很简单》。
2、系统地较为深入地学习mysql的sql优化,备份和恢复,参数优化,架构优化,硬件层面的优化,高可用方案,复制技术等等,这段时间你不一定能实际接触到这些,就像我当初那样,肯定没什么公司招一个小白。
我选择自己看书,推荐《高性能mysql》,里面所有的章节都需要看一遍,以现在的水平肯定看不懂,但需要知道大概怎么回事,为后续的找mysql初级dba的工作打一个铺垫,这个过程大概也需要3个月。
3、 纸上得来终觉浅,完成以上两步,我开始准备找一份mysql相关的工作,而不是天天用着excel表格做着select from table_sb这样的工作。
当然我这么猥琐的人肯定不会裸辞,该画的电路板也一样画,业余时间开始投初级mysql dba的工作,并且不间断地学习,网上各种找mysql面试的相关题目(实际上我当时完全没有任何实战经验),陆续收到一些面试,凭借之前自学的mysql知识,开始胡乱吹牛逼,先混进去再说。
你不做mysql实际相关的工作,永远也不知道自己之前认知的db知识有多幼稚。
友情提示一点,一般公司都没有专职dba的,所以面试的时候一定要自信,其实你学了这么多,虽然毫无实战经验,理论知识很大概率比面试你的人牛逼,所以各种吹,我就这样真正进入初级dba的圈子(由于这时对linux还处于cd ls的水平,所以之前也根本没做过运维),这个边工作边找工作的过程又持续了2个月。
4、真正进入互联网,接触生产环境后,这是我进步最大的时候。
第一步需要将之前所学真正地应用起来,并且应用的过程中,再回头看之前的书籍,这时候需要真正去理解,而不是似是而非,一知半解。
这时再推荐《高性能mysql 第三版》,全本再看一遍,这时需要全部看懂,另外还有《mysql技术内幕:innodb存储引擎》等等。
总之这段时间就需要开始关注mysql一些细节了,比如db故障处理,高可用,负载均衡等等的具体实现了。
另外,linux的知识同步也要深入去学习,至少会写shell脚本,常见的linux知识等,我在这花了1年多;
5、 dba的工作一般是非常轻闲的,毕竟不是大公司,技术能力有限,该学的也学得差不多了,接触不到海量数据,高并发等比较锻炼人的场合,于是我又准备跳了。
于是来了公有云,现在每天运维万多个db实例,平均每天处理5+个紧急db故障,几乎mysql会遇到的问题,感觉都遇到了,能感觉到技术实力和经验也在每天都在积累,在进步。
但是感觉还是欠缺了很多,下一步就看你选择了,是再去研究源代码,底层原理的东西多点,还是数据库运维和应用多一点,就比如业界姜承尧,何登成与叶金荣的区别。
由于我的历史原因,对c++等几乎不懂,平时也用不到,所以看代码等事实际太累,于是我再去学mongodb,接了公司mongodb运维的活,算是在广度上的一个扩展,万一哪天mysql不行了呢
6、 总之,对于db小白来说,最重要的一点就是,学习的过程不能断。
PS 上面的方法比较野路子,适合没什么基础的童鞋,如果本来就是DBA,比如从oracle转到mysql,那么建议直接看mysql官方文档,而官方文档是db达到一定水平后必看,出问题时必查的权威文档。
第一步:找本数据库理论基础教材看看。
第二步:知道什么是数据库后,选一个数据库作为实践对象。建议用
sqlserver练手,因为相关的书籍很多
第三步:有一定的理论基础和实践经验后,选择数据库的专题逐个进行深入学
习,例如:存储机制、查询优化、备份恢复、多版本机制等。可以
oracle为例进行学习,同时分析比较其他数据库之间的差异。
第四步:多关注一些数据库论坛的技术文章和案例分析,有助于理解消化前三
步的知识点。
第五步:参与到实际的数据库相关的工作中,磨练技术。
总之,做这行要勤思考,多钻研,多实践,多总结。
以上就是关于如何学网络数据库全部的内容,包括:如何学网络数据库、数据库应该怎么学习,零基础。、想学数据库,应该从哪里学起等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)