昌平IT培训分享开源大数据分析工具

昌平IT培训分享开源大数据分析工具,第1张

考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适合自己的大数据收集与分析工具。然而,混乱的时局之下已经有多种方案脱颖而出,证明其能够帮助大家切实完成大数据分析类工作。下面昌平IT培训将整理出一份包含十款工具的清单,从而有效压缩选择范畴。

OpenRefine

这是一款高人气数据分析工具,适用于各类与分析相关的任务。这意味着即使大家拥有多川不同数据类型及名称,这款工具亦能够利用其强大的聚类算法完成条目分组。在聚类完成后,分析即可开始。

Hadoop

大数据与Hadoop可谓密不可分。这套软件库兼框架能够利用简单的编程模型将大规模数据集分发于计算机集群当中。其尤为擅长处理大规模数据并使其可用于本地设备当中。作为Hadoop的开发方,Apache亦在不断强化这款工具以提升其实际效果。

Storm

同样来自Apache的Storm是另一款伟大的实时计算系统,能够极大强化无限数据流的处理效果。其亦可用于执行多种其它与大数据相关的任务,具体包括分布式RPC、持续处理、在线机器学习以及实时分析等等。使用Storm的另一大优势在于,其整合了大量其它技术,从而进一步降低大数据处理的复杂性。

Plotly

这是一款数据可视化工具,可兼容JaScript、MATLAB、Python以及R等语言。Plotly甚至能够帮助不具备代码编写技能或者时间的用户完成动态可视化处理。这款工具常由新一代数据科学家使用,因为其属于一款业务开发平台且能够快速完成大规模数据的理解与分析。

Rapidminer

作为另一款大数据处理必要工具,Rapidminer属于一套开源数据科学平台,且通过可视化编程机制发挥作用。其功能包括对模型进行修改、分析与创建,且能够快速将结果整合至业务流程当中。Rapidminer目前备受瞩目,且已经成为众多知名数据科学家心目中的可靠工具。

Cassandra

ApacheCassandra是另一款值得关注的工具,因为其能够有效且高效地对大规模数据加以管理。它属于一套可扩展NoSQL数据库,能够监控多座数据中心内的数据并已经在Netflix及eBay等知名企业当中效力。

HadoopMapReduce

这是一套软件框架,允许用户利用其编写出以可靠方式并发处理大规模数据的应用。MapReduce应用主要负责完成两项任务,即映射与规约,并由此提供多种数据处理结果。这款工具最初由谷歌公司开发完成。

Bokeh

这套可视化框架的主要目标在于提供精致且简洁的图形处理结果,用以强化大规模数据流的交互能力。其专门供Python语言使用。

WolframAlpha

这是一套搜索引擎,旨在帮助用户搜索其需要的计算素材或者其它内容。举例来说,如果大家输入“Facebook”,即可获得与Facebook相关的HTML元素结构、输入解释、Web托管信息、网络统计、子域、Alexa预估以及网页信息等大量内容。

"万里开源拥有一支经验丰富的数据库开发队伍,其核心产品万里开源分布式数据库GreatDB是一款面向云计算时代的分布式事务型数据库,可无限制在线横向扩展、并行计算、无任意单点故障,支持openstack云计算平台、docker容器等IaaS、PaaS平台,不仅满足云时代的业务形态需求,还具备替换Oracle、DB2等传统国外数据库的能力。万里开源分布式数据库作为新时代的先行者,属于国产自主可控数据库,在一体化“国网云”平台、全业务统一数据中心建设中都起到了关键作用,该数据库产品已在国网公司各大系统中得到了推广应用,国家电网实现了关系数据库自主可控的目标。截止到2018年底,累计支撑国家电网公司国网营销、发展、人资、财务、信通等多个业务部门的系统建设,部署国网全业务数据中心、S6000、大数据平台等约200套数据库集群,应用覆盖国家电网总部、27家国家电网省级公司及国网节能服务有限公司、国家电网信息通信产业集团有限公司等直属单位,目前正处于快速发展时期,未来在国家电网和其它领域均有较大成长空间。

万里开源的全资子公司北京拓林思软件有限公司从事Linux *** 作系统开发20年,是中国最早从事Linux产品化的公司之一,其Linux *** 作系统在企业级部署数量及部署范围上处于行业领先地位,在服务器 *** 作系统(Turbolinux发行版)、物联网嵌入式 *** 作系统,包括内核定制、驱动开发、安全加固、文件系统定制、各种广域局域无线通信协议支持和国产芯片支持等方面,具有极其丰富的经验。其 *** 作系统目前已在能源、通信、交通、政府、金融等行业得到了应用。"

本文节选翻译自: >

数据库有:

1、MySQL

MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统)应用软件之一。

2、Oracle

Oracle开发的关系数据库产品因性能卓越而闻名,Oracle数据库产品为财富排行榜上的前1000家公司所采用,许多大型网站也选用了Oracle系统,是世界最好的数据库产品。

3、SqlServer

SQL Server是由Microsoft开发和推广的关系数据库管理系统(DBMS),它最初是由Microsoft、Sybase和Ashton-Tate三家公司共同开发的,并于1988年推出了第一个OS/2版本。

4、SQLite

SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含在一个相对小的C库中。它是DRichardHipp建立的公有领域项目。

5、INFORMIX

Informix是IBM公司出品的关系数据库管理系统(RDBMS)家族。作为一个集成解决方案,它被定位为作为IBM在线事务处理(OLTP)旗舰级数据服务系统。

6、Redis

Redis(Remote Dictionary Server ),即远程字典服务,是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。

7、MongoDB

MongoDB是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。是非关系数据库当中功能最丰富,最像关系数据库的。

8、HBase

HBase是一个分布式的、面向列的开源数据库,该技术来源于Fay Chang所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。

9、Neo4J

Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。10、CouchDB

10、CouchDB

CouchDB 是一个开源的面向文档的数据库管理系统,可以通过 RESTful JavaScript Object Notation (JSON) API 访问。它反映了 CouchDB 的目标具有高度可伸缩性,提供了高可用性和高可靠性,即使运行在容易出现故障的硬件上也是如此。

数据挖掘,又称为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-DiscoveryinDatabases,简称:KDD)中的一个步骤,是一个挖掘和分析大量数据并从中提取信息的过程。其中一些应用包括市场细分-如识别客户从特定品牌购买特定产品的特征,欺诈检测-识别可能导致在线欺诈的交易模式等。在本文中,北京电脑培训整理了进行数据挖掘的8个最佳开源工具。

1、Weka

WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。

2、RapidMiner

RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

3、Orange

Orange是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。其由C++和Python开发,它的图形库是由跨平台的Qt框架开发。

4、Knime

KNIME(KonstanzInformationMiner)是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。

5、jHepWork

jHepWork是一套功能完整的面向对象科学数据分析框架。Jython宏是用来展示一维和二维直方图的数据。该程序包括许多工具,可以用来和二维三维的科学图形进行互动。

6、ApacheMahout

ApacheMahout是ApacheSoftwareFoundation(ASF)开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache在许可下免费使用。该项目已经发展到了它的最二个年头,目前只有一个公共发行版。Mahout包含许多实现,包括集群、分类、CP和进化程序。此外,通过使用ApacheHadoop库,Mahout可以有效地扩展到云中。

7、ELKI

ELKI(EnvironmentforDevelopingKDD-ApplicationsSupportedbyIndex-Structures)主要用来聚类和找离群点。ELKI是类似于weka的数据挖掘平台,用java编写,有GUI图形界面。可以用来寻找离群点。

经常会有人问我数据库是干啥的,其实一开始我是拒绝回答的,因为我也不能做到通俗易懂的表达出来,毕竟我接触这个概念也没有多长时间,但随着问的人多了,我觉得是时候脑补一下我的第一堂课了,万一哪天冒出来个货跟你掰扯这事儿,你没分分钟给他说清,最后弄个丢里儿丢面儿,好尴尬呀。

数据库,说白了就是按照数据结构来组织、存储和管理数据的仓库,这些数据是结构化的,并可为多种应用服务。也就是说,数据库是使用计算机服务器来存储数据的,专门用来提供各种数据服务。可以这样想像,过去一个公司的所有财务数据都是放在保险柜里面,而现在我们就可以针对这些财务数据搭建一个数据库放在某台计算机或服务器上面;再比如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。最常见的数据库有:银行储蓄系统、手机话费系统、美容美发会员系统、超市会员积分系统、水电费系统、机票或火车票系统等,这些都需要后台数据库基础设施的支撑。举了这么多例子,应该是把数据库说明白了,至少能在大脑里面有个概念,知道这个东西是干啥的。

现在大数据被炒的红得发紫,而大数据的基础也是数据,由此可见,数据是一个企业的核心资源,说它是企业的立身之本、发展之基都不为过,因此,维护数据库的数据库管理员(DBA)是企业不可或缺的。

目前市面上的数据库产品有很多,单从规模上分可分为大型、中型、小型几种,典型的数据库产品如下:

大型数据库:Oracle、DB2、Sybase;

中型数据库:MySQL、SQLServer、Infomix;

小型数据库:Access、VisualFoxpro。在众多的数据库产品中,Oracle数据库一直处于行业领导先地位,也是当今最流行的关系型数据库。Oracle可翻译成"甲骨文",它是一家以数据库为主业的全球化公司,是全球第二大软件公司(第一名是微软公司),目前Oracle在数据库软件市场已经排名第一,数据库软件市场份额达到486%,遥遥领先于第二名占有率仅为207%的IBM公司的DB2。在中国市场上的计算机专业系统后台所使用的数据库尤以Oracle数据库居多。但是购买Oracle数据库需要很大一笔费用,一般的大型企业使用,需要有专业人员进行管理和维护,中小企业承担不起。中小企业为了节省成本,一般使用MySQL、PostgreSQL这类免费开源的数据库,所以Oracle数据库相关的工作岗位一般是在大型企业中。

对于为什么选择Oracle数据库,而不是其他的数据库

第一,是因为Oracle数据库占据最大的市场份额,并且越来越大,市场需要很多Oracle数据库方面的人才,中国有句老话说"做对事,选对人",是同样的道理;第二,是很多非Oracle数据库的老系统正往Oracle数据库迁移,其他数据库市场占有率在减少,其他数据库工作者有面临失业的风险;第三,Oracle有大量的官方学习文档,还有部分中文文档,可以有效地进行学习;第四,Oracle有大量的从业人员,有共同方向的朋友可以互相帮助,不再是孤胆英雄;第五,是可以很容易地从Oracle官方网站下载功能齐全的数据库最新版本进行学习,可以让你了解数据库方面的最新发展趋势等。

在此说明,以后的所有内容都是基于Oracle11g数据库产品的,下面我们就简单介绍一下Oracle11g的系列产品:

企业版(EnterpriseEdition)此版本包含了数据库的所有组件,并且能够通过购买选项和程序包来进一步对其增强。

能支持例如大业务量的在线事务处理OLTP(On-LineTransactionProcessing联机事务处理系统)环境、查询密集的数据仓库和要求苛刻的互联网应用程序。

标准版1(StandardEditionOne)此版本为工作组、部门级和互联网、内联网应用程序提供了前所未有的易用性和性价比。从针对小型商务的单服务器环境到大型的分布式部门环境,该版本包含了构建重要商务应用程序所必需的全部工具。它仅许可在最高容量为2个处理器的服务器上使用,支持Windows/Linux/UNIX *** 作系统,并支持64位平台 *** 作系统。

标准版(StandardEdition)此版本提供了StandardEditionOne所不具有的易用性、能力和性能,并且利用真正的应用集群(RAC)提供了对更大型计算机和服务集群的支持。它可以在最高容量为4个处理器的单台服务器上、或者在一个支持最多4个处理器的集群上使用,可支持Windows、Linux和UNIX *** 作系统,并支持64位平台 *** 作系统。

简化版此版本支持与标准版1、标准版和企业版完全兼容的单用户开发和部署。通过将Oracle数据库获奖的功能引入到个人工作站中,该版本提供了结合世界上最流行的数据库功能的数据库,并且该数据库具有桌面产品通常具有的易用性和简单性,可支持Linux和Windows *** 作系统。

从存储结构上来说,目前流行的数据库主要包含以下两种:

RDBMS:关系型数据库,是指采用了关系模型来组织数据的数据库;

NoSQL数据库,是指那些非关系型的、分布式的数据库。简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。

关系型数据库优点:

1、容易理解

二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解。

2、使用方便

通用的SQL语言使得 *** 作关系型数据库非常方便。

3、易于维护

丰富的完整性大大减低了数据冗余和数据部移植的概率。

4、事务安全

所有关系型数据库都不同程度的遵守事物的四个基本属性,因此对于银行、电信、证券等交易型业务是不可或缺的。

关系型数据库的瓶颈:

1、高并发读写需求

网站的用户并发性非常高,往往达到每秒上万次读写请求,对于传统型数据库来说,硬盘I/O是一个很大的瓶颈。

2、海量数据的高效率读写

互联网上每天产生的数据量是巨大的,对于关系型数据库来说,在一张包含海量数据的表中查询,效率是非常低的。

3、高扩展性和可用性

在基于WEB的结构中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,数据库却没有办法像WEBServer和APPLICATIONServer那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移。

NoSQL数据库

NoSQL一词首先是CarloStrozzi在1998年提出的。2009年再次提出了NoSQL一词,用于指那些非关系型的、分布式的,且一般不保证遵循ACID原则的数据存储系统。

NoSQL具有以下特点:

1、可以弥补关系型数据库的不足

2、针对某些特定的需求而设计,可以具有极高的性能

3、大部分都是开源的,由于成熟度不够,存在潜在的稳定性和维护性问题。

关系型数据库适用于结构化数据,而非关系型数据库适用于非结构化数据,二者优势互补,相得益彰。

Oracle数据库未来的发展方向是提供结构化、非结构化、半结构化的解决方案,实现关系型数据库和NoSQL共存互补。值得强调的是,目前关系型数据库仍是主流数据库。

虽然NoSQL数据库打破了关系型数据库存储的观念,可以很好地满足WEB20时代数据的存储要求,但NoSQL数据库也有自己的缺陷。在现阶段的情况下,可以将关系型数据库和NoSQL数据库结合使用,相互弥补各自的不足。

关于数据库及其代表产品Oracle今天就介绍这么多,有兴趣的可以继续深挖,希望我的介绍能让你对数据库有一个更深入的认识。如果有志于在这方面发展的话,就让我们一起跟往事干杯从头再来。

随着互联网的不断发展,有时候企业需要使用不同的开源数据库来搭建自己的在线平台。下面我们就一起来了解一下,在选择数据库的时候我们都有哪些方法可以使用。

有一个明确的目标

这一点看似简单,但在和很多人聊过MySQL、MongoDB、PostgreSQL之后,我觉得这一点才是重要的。面对繁杂的开源数据库,更需要明确自己的目标。无论这个数据库是作为开发用的标准化数据库后端,抑或是用于替换遗留代码中的原有数据库,这都是一个明确的目标。目标一旦确定,就可以集中精力与开源软件的提供方商讨更多细节了。

了解你的工作负载

尽管开源数据库技术的功能越来越丰富,但这些新加入的功能都不太具有普适性。譬如MongoDB新增了事务的支持、MySQL新增了JSON存储的功能等等。目前开源数据库的普遍趋势是不断加入新的功能,但很多人的误区却在于没有选择适合的工具来完成自己的工作——这样的人或许是一个自大的开发者,又或许是一个视野狭窄的主管——终导致公司业务上的损失。致命的是,在业务初期,使用了不适合的工具往往也可以顺利地完成任务,但随着业务的增长,很快就会到达瓶颈,尽管这个时候还可以替换更合适的工具,但成本就比较高了。例如,如果你需要的是数据分析仓库,关系数据库可能不是一个适合的选择;如果你处理事务的应用要求严格的数据完整性和一致性,就不要考虑NoSQL了。

不要重新发明轮子

在过去的数十年,开源数据库技术迅速发展壮大。开源数据库从新生,到受到质疑,再到受到认可,现在已经成为很多企业生产环境的数据库。企业不再需要担心选择开源数据库技术会产生风险,因为开源数据库通常都有活跃的社区,可以为越来越多的初创公司、中型企业甚至500强公司提供开源数据库领域的支持和三方工具。

先从简单开始

你的数据库实际上需要达到多少个9的可用性对许多公司来说,“实现高可用性”仅仅只是一个模糊的目标。当然,常见的答案都会是“它是关键应用,我们无论多短的停机时间都是无法忍受的”。北京IT培训发现数据库环境越复杂,管理的难度就越大,成本也会越高。理论上你总可以将数据库的可用性提得更高,但代价将会是大大增加的管理难度和性能下降。所以,先从简单开始,直到有需要时再逐步扩展。

以上就是关于昌平IT培训分享开源大数据分析工具全部的内容,包括:昌平IT培训分享开源大数据分析工具、万里开源GreatDB产品怎么样、三大开源数据湖产品选型快速指南等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9354450.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存