如何应对海量高并发场景,保证数据安全和业务稳定

如何应对海量高并发场景,保证数据安全和业务稳定,第1张

通过用友YonSuite可以应对海量高并发场景,保证数据安全和业务稳定。用友YonSuite的分布式架构可以将业务压力分散到不同的子系统上,提高系统的稳定性和扩展性。用友YonSuite的负载均衡技术可以将用户请求均衡地分配到多个服务器上,避免单点故障,提高系统的稳定性和可用性。用友YonSuite的数据库优化技术可以提高数据库的并发性和性能,保证系统的高效运行。用友YonSuite的安全加固技术可以保障数据的安全性和完整性,避免数据泄露和损坏。最后,用友YonSuite的监控和报警机制可以实时监控系统的运行状况,及时发现和解决问题,保证业务的稳定运行。具体来说,用友YonSuite有以下优势:

1) 采用真正的云原生、微服务架构,基于与用友BIP 3同根同源、最新的iuap60 PaaS云平台,从技术层面实现多租户以及多数据中心。

2) 通过多项安全认证,包括系统安全、数据安全、业务安全和信创安全,给用户满满的安全感。

3) 通过先进的场景应用,覆盖400+场景化应用,快速构建数智飞轮的闭环场景。

4) 通过先进的客户化开发,赋予了企业技术部门、ISV以及开发者们在YonSuite进行原生开发以及增值开发的能力。

优化建议:

1 在你的代码里大点评测下 每个 *** 作花的时间 譬如 dom4j解析花了多久, 存储到数据库花了多久等等

2 评测哪些地方可以并行 *** 作以提高CPU利用率;

3 数据库 *** 作部分也可以做适当优化, 譬如批量提交可以显著提高插入速度, 譬如去除索引/主键后插入等;

4 不同机器的IO速度是不同的, 因此应该能提供运行时的任务调度参数化, 譬如多少个dom4j解析线程, 入库的批量数量等;

如何处理大量数据并发 *** 作

文件缓存,数据库缓存,优化sql,数据分流,数据库表的横向和纵向划分,优化代码结构!

锁述的概

一 为什么要引入锁

多个用户同时对数据库的并发 *** 作时会带来以下数据不一致的问题:

丢失更新

A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统

脏读

A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致

不可重复读

A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致

并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些 *** 作以避免产生数据不一致

二 锁的分类

锁的类别有两种分法:

1 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁

MS-SQL Server 使用以下资源锁模式。

锁模式 描述

共享 (S) 用于不更改或不更新数据的 *** 作(只读 *** 作),如 SELECT 语句。

更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。

排它 (X) 用于数据修改 *** 作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。

意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。

架构锁 在执行依赖于表架构的 *** 作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。

大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。

共享锁

共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。

更新锁

更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此 *** 作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。

若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。

排它锁

排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。

意向锁

意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁 以确定事务是否可以锁定整个表。

1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。

3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。

4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用 *** 作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。

5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、调整 *** 作系统参数,例如:运行在UNIX *** 作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。

在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

扩展资料

数据库,简单来说是本身可视为电子化的文件柜--存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等 *** 作。

数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的"仓库",并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

参考资料:

数据库的百度百科

由于某些限制,三方后端服务一次性一页最多返回200条,由于某些原因,前端需要拿到所有数据做前端过滤等。

初次使用async await 实现顺序调用接口,速度较慢。

后续使用async await promise实现分组并发,优化数据获取速度。

优化渲染及 *** 作:后续对长列表做虚拟列表优化处理,或者前端切片分页处理。

以上就是关于如何应对海量高并发场景,保证数据安全和业务稳定全部的内容,包括:如何应对海量高并发场景,保证数据安全和业务稳定、Java多线程并发 *** 作数据库能否提高运行速度。、如何处理大量并发连接的超时等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9420986.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-28
下一篇 2023-04-28

发表评论

登录后才能评论

评论列表(0条)

保存