数据库一般存储在线交易数据,数据仓库存储的一般是历史数据
数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计
数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表
维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID
单从概念上讲,有些晦涩
任何技术都是为应用服务的,结合应用可以很容易地理解
以银行业务为例
数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐
数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据
比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少
如果存款又多,消费交易又多,那么该地区就有必要设立ATM了
显然,银行的交易量是巨大的,通常以百万甚至千万次来计算
事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据
而分析系统是事后的,它要提供关注时间段内所有的有效数据
这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了
数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”
那么,数据仓库与传统数据库比较,有哪些不同呢让我们先看看W
H
Inmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合
“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的
这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块
也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的
“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息
数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性
决策中,时间属性很重要
同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的
“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源
数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)
因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的
数据仓库的出现,并不是要取代数据库
目前,大部分数据仓库还是用关系数据库管理系统来管理的
可以说,数据库、数据仓库相辅相成、各有千秋
补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大
为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案
1
效率足够高
客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析
由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的
2
数据质量
客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益
3
扩展性
之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行
主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了
大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。
从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。
扩展信息:
大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。
是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。
实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。
数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。
“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。
“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。
:数据仓库的出现,并不是要取代数据库。数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。
目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。
SQL2000
在开始-程序-MICROSOFTSQLSERVER-企业管理器界面下打开控制台根目录下的所有号展开到(LOCAL)(WINDOWSNT),它下面有数据库,数据转换服务等等,你在“数据库”右键点“新建数据库”就可以了
SQL2005
》打开SQLServerManagementStudio。
》系“连接到服务器”对话框中,“服务器类型”下拉选项选择“数据库引擎”,“服务器名称”个度默认会显示上次连接的服务器,可以使用计算机名称、IP地址或是命名管道来连接。
》打开“对象资源管理器”,右击“数据库”可以新建数据库。
》点击新建数据库后,出现一个窗口,通常只要完成常规页面设置即可。设置如下:
1.“数据库名称”要符合SQL的命名规则,唔好与现存的数据库名称相同。2.“所有者”,点一下“。”按扭来选取其他用户。
3.“使用全文索引”,全文索引可以快速且有d性地编制索引,查询大量非结构化文本数据时效率高于LIKE表达式。
4.“逻辑名称”,一般采用默认的,方便管理。
5.“初始大小”,设置时可根据你的主要数据库估计用到几大,便设到几大,再去设启用“自动增长”。一般选按1M,“不限制文件增长”。
6.“路径”,选择存储数据库的位置。
7.日志的设置按数据设置技巧相同,但要注意,日志文件会记录所有发生在数据库的变动和更新,以便到硬件损坏等各种意外时,能有效地将数据还原到发生意外的时间点上,从而确保数据的一致性与完整性。显然,要让日志文件能够发挥效用,必须将数据文件与日志文件存储在不同的物理磁盘上这点是您在设定日志文件的物理文件名时所必须留意的。
8.“添加”,在添加时注意选“文件类型”,当你选择日志,文件组就会自动选用“不适用”。还要注意,不用的日志,存储路径的物理盘应设置为不同。以便还原。
9.添加次要数据文件默认会隶属于主要文件组,如果你想新建一个文件组,在次要数据的文件组中选择“新文件组”,输入名称,选中“默认值”。如果你唔想被人修改或更新文件组内的表,你就选“只读”。
数据仓库是面向主题的、集成的、非易失的和时变的数据集合,用以支持管理决策。
面向主题:传统数据库中,最大的特点是面向应用进行数据的组织,各个业务系统可能是相互分离的。而数据仓库则是面向主题的。主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。
集成性:通过对分散、独立、异构的数据库数据进行抽取、清理、转换和汇总便得到了数据仓库的数据,这样保证了数据仓库内的数据关于整个企业的一致性。
数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一步,所要完成的工作有:1要统一源数据中所有矛盾之处,如字段的同名异义、异名同义、单位不统一、字长不一致,等等。2进行数据综合和计算。数据仓库中的数据综合工作可以在从原有数据库抽取数据时生成,但许多是在数据仓库内部生成的,即进入数据仓库以后进行综合生成的。
非易失性
数据仓库的数据反映的是一段相当长的时间内历史数据的内容,是不同时点的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据。
数据非易失性主要是针对应用而言。数据仓库的用户对数据的 *** 作大多是数据查询或比较复杂的挖掘,一旦数据进入数据仓库以后,一般情况下被较长时间保留。数据仓库中一般有大量的查询 *** 作,但修改和删除 *** 作很少。因此,数据经加工和集成进入数据仓库后是极少更新的,通常只需要定期的加载和更新。
时变性数据仓库包含各种粒度的历史数据。数据仓库中的数据可能与某个特定日期、星期、月份、季度或者年份有关。数据仓库的目的是通过分析企业过去一段时间业务的经营状况,挖掘其中隐藏的模式。虽然数据仓库的用户不能修改数据,但并不是说数据仓库的数据是永远不变的。分析的结果只能反映过去的情况,当业务变化后,挖掘出的模式会失去时效性。因此数据仓库的数据需要更新,以适应决策的需要。从这个角度讲,数据仓库建设是一个项目,更是一个过程。数据仓库的数据随时间的变化表现在以下几个方面:
(1) 数据仓库的数据时限一般要远远长于 *** 作型数据的数据时限。
(2) *** 作型系统存储的是当前数据,而数据仓库中的数据是历史数据。
(3) 数据仓库中的数据是按照时间顺序追加的,它们都带有时间属性。
数据分析师如今风靡全网,那么什么是数据分析呢?此合集将会对数据分析的框架做一个细致解析并推荐相关文章以便入门学习。
一、数据获取
现如今大数据时代已经到来,企业需要数据来分析用户行为、自己产品的不足之处以及竞争对手的信息等,而这一切的首要条件就是数据的采集。常用的数据获取手段有数据仓库和 *** 作日志,监测与爬取(即爬虫),填写、埋点和计算
1、数据仓库和 *** 作日志
数据仓库(Data Warehouse,DW)长期储存在计算机内,有组织、可共享的数据集合,是为决策支持系统提供基础数据的分析型数据库。
数据仓库有几个定义特征,即 :
推荐阅读:一、数据仓库 - 架构艺术 - 博客园
日志和数据仓库具有相同的作用,但相比之下日志的记录比数据仓库精简,且在出现故障时更容易定位问题。
2监测与爬取
爬虫是指: 通过编写程序,模拟浏览器上网,然后让其去互联网上抓取数据的过程。
根据使用场景,网络爬虫可分为通用爬虫和聚焦爬虫两种。
通用爬虫是捜索引擎抓取系统(Baidu、Google等)的重要组成部分。主要目的是将互联网上的网页下载到本地,形成一个互联网内容的镜像备份。 简单来讲就是尽可能的;把互联网上的所有的网页下载下来,放到本地服务器里形成备分,再对这些网页做相关处理(提取关键字、去掉广告),最后提供一个用户检索接口。
聚焦爬虫,是"面向特定主题需求"的一种网络爬虫程序,它与通用搜索引擎爬虫的区别在于: 聚焦爬虫在实施网页抓取时会对内容进行处理筛选,尽量保证只抓取与需求相关的网页信息。
推荐阅读:爬虫(爬虫原理与数据抓取) - lclc - 博客园
爬虫 - Z-J-H - 博客园
3填写、埋点
这两个都是对用户行为进行记录。
填写是指用户在注册时填写信息或者对相关问卷进行填写。 通过问卷调查、抽样调查获取的数据是有限的,并且有时也不能够保证真实性。
埋点主要指 APP或网页埋点,跟踪app或网页被使用情况,以便优化。通常记录访客、页面查看、跳出率等等页面统计和 *** 作行为)。直接记录用户与网络产品的交互过程,几乎可以复现,从而 获得用户的行为模式,购买记录、搜索习惯等。这些数据都是用户自己产生的,可以保证数据的真实性。
推荐阅读:6大步骤:快速学会如何进行数据埋点
4计算
很多数据无法直接获取,需要通过已有数据计算得到。例如企业的投入产出比。
最后,需要强调的是进行数据分析的数据必须真实、准确且具有时效性。数据获取后使用个人信息要遵守以下5大原则:
(1)合法、公开原则。
(2)目的限制原则。
(3)最小数据原则。
(4)数据安全原则。
(5)限期存储原则。
下一篇文章将会对数据分析中的数据预处理做一个简单梳理
简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。
数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。
数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。
数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。
单从概念上讲,有些晦涩。任何技术都是为应用服务的,结合应用可以很容易地理解。以银行业务为例。数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要设立ATM了。
显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。
数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。那么,数据仓库与传统数据库比较,有哪些不同呢让我们先看看WHInmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。
“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。
“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。
“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。
数据仓库的出现,并不是要取代数据库。目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。
补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。
1效率足够高。客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。
2数据质量。客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。
3扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。
以上就是关于数据库和数据仓库有什么区别全部的内容,包括:数据库和数据仓库有什么区别、大数据是什么,详细、数据库与数据仓库的区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)